期刊文献+

基于概率神经网络的燃气调压器故障诊断模型 被引量:4

Gas pressure regulator fault diagnosis model based on probabilistic neural network
下载PDF
导出
摘要 燃气调压器故障诊断对城镇燃气管网的安全运行有着十分重要的意义,通过对燃气调压器进行故障诊断为其正常运行提供可靠的依据显得极为重要。鉴于此,针对主流燃气调压器提出一种基于概率神经网络(PNN)的故障诊断模型,主要通过搭建的概率神经网络对同一燃气调压器的4种不同类型状态(关闭压力高、用气高峰压力低、喘振故障和正常状态)进行诊断。仿真结果表明,与目前已经应用于工程实践的燃气调压器故障诊断算法如经验模态分解(EMD)算法相比,该方法在故障诊断率和诊断用时两个指标上有明显优势,应用于工程实际问题具有良好的有效性和实用性。 The fault diagnosis of gas regulator is very important to the safe operation of urban gas pipeline network. It is very necessary to provide reliable basis for its normal operation by fault diagnosis of gas regulator. In view of this,the fault diagnosis model based on probabilistic neural network(PNN) is introduced for the main gas regulator fault. The PNN is used to diagnose four different states(high shutoff pressure,low peak pressure,surge fault and normal state) of the same gas regulator. The simulation results show that the method has more obvious advantages in the fault diagnosis rate and the time required for fault diagnosis in comparison with the existing gas regulator fault diagnosis algorithms such as the empirical mode algorithm (E MD). It is effective and practical for the practical engineering problems.
作者 安允 王亚慧 章富城 AN Yun;WANG Yahui;ZHANG Fucheng(Beijing University of Civil Engineering and Architecture,Beijing 100044,China)
机构地区 北京建筑大学
出处 《现代电子技术》 北大核心 2019年第17期109-113,共5页 Modern Electronics Technique
基金 国家自然科学基金:高速循环“热”交变“力”耦合条件下涂层/基体界面元素扩散行为及对界面组织形成、涂层功能退化的作用机制(51271011)~~
关键词 概率神经网络 燃气调压器 故障诊断 数据分类 数据处理 仿真分析 probabilistic neural network(PNN) gas regulator fault diagnosis data classification data processing simulation analysis
  • 相关文献

参考文献6

二级参考文献38

  • 1李冬辉,刘浩.基于概率神经网络的故障诊断方法及应用[J].系统工程与电子技术,2004,26(7):997-999. 被引量:38
  • 2虞和济.机械设备故障诊断的人工神经网络识别法[J].机械强度,1995,17(2):48-54. 被引量:15
  • 3刘磊,江桦,贾永强.基于人工神经网络的DVB-S2数字信号调制模式识别[J].微计算机信息,2005,21(12Z):169-171. 被引量:6
  • 4杜华英,赵跃龙.人工神经网络典型模型的比较研究[J].计算机技术与发展,2006,16(5):97-99. 被引量:23
  • 5SPECHT D F. Probabilistic Neural Networks[J]. Neural Networks, 1990, 3(1): 109-118.
  • 6LOPARO K A. Bearing vibration data set[EB/OL] [2002 -06-17]. http://www, eecs. cwru. edu/laboratory/bearing/ download, htm.
  • 7张德丰,等.MATLAB神经网络应用设计[M].北京:机械工业出版社,2011.
  • 8WANG Yunsong, CHU Fulei. Real-Time Misfire Detection via Sliding Mode Observer[J]. Elsevier Mechanical Systems and Signal Processing, 2005, 19(4) : 900-912.
  • 9HU Chongqing, LI Aihua, ZHAO Xingyang. Multivariate Statistical Analysis Strategy for Multiple Misfire Detection in Internal Combustion Engines [ J ]. Elsevier Mechanical Systems and Signal Processing, 2011, 25 (2) : 694-703.
  • 10WEI~ENBORN E, BOSSMEYER T, BERTRAM T. Adaptation of a Zero-Dimensional Cylinder Pressure Model for Diesel Engines Using the Crankshaft Rotational Speed [ J]. Elsevier Mechanical Systems and Signal Processing, 2011, 25(6) : 1887-1910.

共引文献54

同被引文献40

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部