期刊文献+

基于调节优化BP神经网络的高校教学管理评估研究 被引量:1

Research on university teaching management evaluation based on adjusting and optimizing BP neural network
下载PDF
导出
摘要 为了提高高校教学管理评估的有效性与智能性,将粒子群优化BP神经网络算法运用于高校教学管理评估数据的分析。采用BP神经网络对教学管理评估指标进行建模,然后采用粒子群对神经网络传递函数的权重和阈值进行深入优化,保证BP神经网络的输出能取得全局最优解。经过实验证明,所提算法对高校教学管理评估对象的预估值与实际值拟合性好,有较强的推广价值。 In order to improve the effectiveness and intelligence of teaching management evaluation in colleges and universities,the particle swarm optimization BP neural network algorithm is applied to data analysis of teaching management evaluation in colleges and universities. The BP neural network is used to perform the mathematical modeling of the evaluation index of teaching management,and then the particle swarm optimization is used to deeply optimize the weights and thresholds of the transfer function of the neural network to ensure that the output of the BP neural network can obtain the global optimal solution. The experimental results show that the proposed algorithm has high fitting performance between the estimated and actual values of the evaluation objects of teaching management in colleges and universities,and has high popularization value.
作者 傅凯文 严煜华 FU Kaiwen;YAN Yuhua(China Jiliang University,Hangzhou 310018,China)
机构地区 中国计量大学
出处 《现代电子技术》 北大核心 2019年第17期152-154,共3页 Modern Electronics Technique
关键词 教学管理评估 粒子群优化 BP神经网络 正态分布 权重 阈值 teaching management evaluation particle swarm optimization BP neural network normal distribution weight threshold
  • 相关文献

参考文献5

二级参考文献26

  • 1Marziliano P, Dufaux F, Winkler S, et al. A no-reference perceptual blur metric[C]//Proceedings of the 9th International Conference on Image Processing. New York, USA: IEEE, 2002, 3:57-60.[DOI: 10.1109/ICIP.2002.1038902].
  • 2Tong H, Li M, Zhang H, et al. Blur detection for digital images using wavelet transform[C]//Proceedings of the 10th International Conference on Multimedia and Expo. Taipei, Taiwan, China: IEEE, 2004: 17-20. [DOI: 10.1109/ICME.2004.1394114].
  • 3Narvekar N D, Karam L J. A no-reference image blur metric based on the cumulative probability of blur detection [J].IEEE Transactions on Image Processing, 2011, 20(9): 2678-2683. [DOI: 10.1109/TIP.2011.2131660].
  • 4Soleimani S, Rooms F, Philips W. Efficient blur estimation using multi-scale quadrature filters [J]. Signal Processing, 2013, 93(7): 1988-2002. [DOI: 10.1016/j.sigpro.2012.12.015].
  • 5Grimaldi D, Kurylyak Y, Lamonaca F. Detection and parameters estimation of locally motion blurred objects[C]//Proceedings of the 6th International Conference on Intelligent Data Acquisition and Advanced Computing Systems. Prague, Czech: IEEE, 2011: 483-487. [DOI: 10.1109/IDAACS.2011.6072800].
  • 6Levin A. Blind motion deblurring using image statistics [C]//Proceedings of the Conference on Advances in Neural Information Processing Systems. Vancouver, Canada:MIT Press, 2006:841-848.[DOI:10.1.1.110.2995].
  • 7Chakrabarti A, Zickler T, Freeman W T. Analyzing spatially-varying blur[C]//Proceedings of the 23rd International Conference on Computer Vision and Pattern Recognition. San Francisco,USA:IEEE,2010: 2512-2519.[DOI: 10.1109/CVPR.2010.5539954].
  • 8Marichal X, Ma W Y, Zhang H J. Blur determination in the compressed domain using DCT information[C]//Proceedings of the 6th International Conference on Image Processing. Kobe, Japan:IEEE, 1999,2: 386-390. [DOI: 10.1109/ICIP.1999.822923].
  • 9Su B, Lu S, Tan C L. Blurred image region detection and classification[C]//Proceedings of the 19th ACM Iternational Conference on Multimedia. Toronto, Canada:ACM, 2011: 1397-1400.[DOI: 10.1145/2072298.2072024].
  • 10Hsu P, Chen B Y. Blurred image detection and classification [C]//Proceedings of 14th International Conference on Advances in Multimedia Modeling. Kyoto,Japan: ACM Press, 2008,4903: 277-286.[DOI: 10.1007/978-3-540-77409-9_26].

共引文献57

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部