摘要
目前自然语言推理(Natural language inference, NLI)模型存在严重依赖词信息进行推理的现象.虽然词相关的判别信息在推理中占有重要的地位,但是推理模型更应该去关注连续文本的内在含义和语言的表达,通过整体把握句子含义进行推理,而不是仅仅根据个别词之间的对立或相似关系进行浅层推理.另外,传统有监督学习方法使得模型过分依赖于训练集的语言先验,而缺乏对语言逻辑的理解.为了显式地强调句子序列编码学习的重要性,并降低语言偏置的影响,本文提出一种基于对抗正则化的自然语言推理方法.该方法首先引入一个基于词编码的推理模型,该模型以标准推理模型中的词编码作为输入,并且只有利用语言偏置才能推理成功;再通过两个模型间的对抗训练,避免标准推理模型过多依赖语言偏置.在 SNLI和 Breaking-NLI 两个公开的标准数据集上进行实验,该方法在 SNLI 数据集已有的基于句子嵌入的推理模型中达到最佳性能,在测试集上取得了 87.60 %的准确率;并且在 Breaking-NLI 数据集上也取得了目前公开的最佳结果.
At present, natural language inference(NLI) models rely heavily on word information. Although the discriminant information related to the words plays an important role in inference, the inference models should pay more attention to the internal meaning of continuous text and the expression of language, and carry out inference through an overall grasp of sentence meaning rather than make shallow inference based on the opposition or similarity between individual words. In addition, the traditional supervised learning method makes the model rely too much on the language priori of the training set, and lacks the understanding of the language logic. In order to explicitly emphasize the importance of the learning sequence encoding and reduce the impact of language bias, this paper proposes a natural language inference method based on adversarial regularization. This method firstly introduces an inference model based on word encoding, which takes the word encoding in the standard inference model as input, and it can infer successfully only by using language bias.Then, through the adversarial training between the two models, the standard inference model can avoid relying too much on language bias. Experiments were carried out on two open standard datasets, SNLI and Breaking-NLI. On the SNLI dataset, the method achieves the best performance in existing inference models based on sentence embedding, and achieves87.60 % accuracy in test set. And the inference model has achieved state-of-the-art result on the Breaking-NLI dataset.
作者
刘广灿
曹宇
许家铭
徐波
LIU Guang-Can;CAO Yu;XU Jia-Ming;XU Bo(School of Automation, Harbin University of Science and Technology, Harbin 150080;Institute of Automation, Chinese Academy of Sciences (CASIA), Beijing 100190;Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031)
出处
《自动化学报》
EI
CSCD
北大核心
2019年第8期1455-1463,共9页
Acta Automatica Sinica
基金
国家自然科学基金(61602479)
中国科学院战略性先导科技专项基金(XDB32070000)
北京脑科学专项基金(Z181100001518006)资助~~
关键词
深度学习
自然语言推理
语言偏置
对抗正则化
Deep learning
natural language inference (NLI)
language bias
adversarial regularization