摘要
在水下钻孔爆破地震波监测中,会因监测环境、测试系统及其他因素而导致实测地震波信号混有噪声.为了获得真实的爆破振动特性,文中对水下钻孔爆破地震波信号进行降噪处理.首先对含噪实测地震波信号进行补充集合经验模态分解,基于分解所得的本征模态函数建立滤波算法;然后建立考虑滤波算法光滑性及其与实测信号之间误差标准差的目标函数,找到目标函数最优解对应的模型就是水下钻孔爆破地震波信号的最优降噪光滑模型;最后基于降噪误差比分析模型的降噪能力.结果表明,文中提出的地震波信号最优降噪光滑模型可用于水下钻孔爆破信号降噪中,该模型可以在保留原始信号真实成分的前提下对原始信号进行降噪处理.
Monitoring environment,testing system and other factors will cause noise in the measured seismic wave signal during the monitoring of underwater drilling blasting seismic wave.In order to obtain the real blasting vibration characteristics,the seismic wave signal of underwater drilling blasting was denoised.Firstly,the complementary ensemble empirical mode decomposition was used to decompose the noisy measured seismic wave signal,and the filtering algorithm was established based on the intrinsic mode function obtained from the decomposition.Then,the objective function considering the smoothness of the filtering algorithm and the standard deviation between the filtering algorithm and the measured signal was established.The model corresponding to the optimal solution of the objective function was the optimal denoising smooth model of the underwater drilling blasting seismic wave signal.Finally,the denoising ability of the model was analyzed by the denoising error ratio.The results show that the proposed optimal denoising smoothness model of seismic wave signal can be used in underwater drilling blasting signal denoising.The model can denoise the original signal while retaining the true components of the original signal.
作者
孙苗
吴立
周玉纯
马晨阳
汪煜烽
SUN Miao;WU Li;ZHOU Yuchun;MA Chenyang;WANG Yufeng(Engineering Research Center of Rock-Soil Drilling & Excavation and Protection of the Ministry of Education∥ Facultyof Engineering,China University of Geosciences,Wuhan 430074,Hubei,China)
出处
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2019年第8期31-37,共7页
Journal of South China University of Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(41672260)~~
关键词
水下钻孔爆破
地震波监测
补充集合经验模态分解
本征模态函数
信噪比
underwater drilling blasting
seismic wave monitoring
complementary ensemble empirical mode decomposition
intrinsic mode function
signal-to-noise ratio