期刊文献+

一种基于动态视频的可见光隐式成像通信自适应嵌入算法

Message Adaptive Embedding Algorithm for Visible Light Implicit Imaging Communication Based on Dynamic Video
下载PDF
导出
摘要 针对可见光隐式成像通信系统中动态视频作为发送端信息载体时视频帧间存在差异的问题,分析动态视频帧图像实时变化的特点和帧间差异对信息传输造成干扰的原因,提出一种互补帧调制的自适应信息嵌入算法。该算法以动态视频作为隐式信息传输的载体,实现系统的可靠传输并有效地避免静态图像作为载体时的单一性。测试实验结果表明,该算法解决了动态视频帧间差异导致的系统误码性能降低的问题,并且改善隐式信息的视觉无感效果。 In order to address the difference between video frames in the visible light implicit imaging communication system when dynamic video is used as the transmitter information carrier, this paper proposes amessage adaptive embedding algorithm based on complementary frame modulation. In this paper, the characteristic of real-time changes of dynamic video frames and the reasons for the interference of information transmission caused by the difference between frames are analyzed.The algorithm uses dynamic video as the transmitter carrier of implicit information, which realizes the reliable transmission of the system and effectively avoids the singularity of the static image as a carrier. The experimental results show that the proposed algorithm solves the problem of reduction for system error performance caused by the difference between dynamic video frames, and improves the visual non-inductive effect of implicit information.
作者 孟钰婷 胡赟鹏 李明超 唐燕群 MENG Yuting;HU Yunpeng;LI Mingchao;TANG Yanqun(Information Engineering University, Zhengzhou 450001, China)
机构地区 信息工程大学
出处 《信息工程大学学报》 2018年第6期669-674,共6页 Journal of Information Engineering University
基金 国家自然科学基金资助项目(61601516)
关键词 可见光 光成像通信 隐式传输 自适应 visible light optical camera communication implicittransmission adaptive
  • 相关文献

参考文献2

二级参考文献18

  • 1玉振明,高飞.基于金字塔方法的图像融合原理及性能评价[J].计算机应用研究,2004,21(10):128-130. 被引量:38
  • 2Komine T, Nakagawa M. Fundamental analysis for visible-light communication system using LED lights[J]. IEEE Transactions o11 Consumer Electronics, 2004, 50(1): 100-107.
  • 3Zeng L, O' Brien D C, Minh H L, et al. High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting[J]. IEEE J Sel Area Commun, 2009, 27(9): 1654-1662.
  • 4Yuan W, Dana K, Varga M, et al. Computer vision methods for visual MIMO optical system[C]. IEEE Computer Vision and Pattern Recognition Workshop, 2008, 26(24): 3883-3892.
  • 5Kinoshita M, Yamazato T, Okada H, et al. Motion modeling of mobile transmitter for image sensor based I2V-VLC, V2I-VLC, and V2V-VLC[C]. 2014 Globecom Workshops, 2014: 450-455.
  • 6Ashok A, Gruteser M, Mandayam N, et al. Challenge: Mobile optical networks through visual MIMO[C]. The 16th Annual International Conference on Mobile Computing and Networking, 2010:105-112.
  • 7Zhu Huanyu, Zhu Yijun, Zhang Jiankang, et al. A double-layer VLC system with low-complexity ML detection and binary constellation designs[J]. IEEE Commun Lett, 2015: 561-564.
  • 8Yuan W J, Dana K, Ashok A, et al. Dynamic and invisible messaging for visual MIMO[C]. IEEE Applications of Computer Vision Workshop, 2012: 345-362.
  • 9Wang T Q, Sekercioglu Y A, J Armstrong. Analysis of an optical wireless receiver using a hemispherical lens with application in MIMO visible light communications[J]. J Lightwave Technol, 2013, 31(11): 1744-1754.
  • 10Ashok A, Gruteser M, Mandayam N, et al. Characterizing multiplexing and diversity in visual MIMO[C]. Conference on Information Sciences and Systems, 2011: 1-6.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部