期刊文献+

基于进化博弈理论的关联规则聚类方法研究

Associate Rules Cluster Approach Based on Evolutionary Game Framework Theory
下载PDF
导出
摘要 聚类是可视化分析领域压缩数据的有效方法。针对关联规则可视化挖掘中高阶关联特性和无法预先确定分簇数量的问题,设计一种基于进化博弈理论的关联规则聚类方法。首先采用超图工具描述规则间的关联特性;其次,将超图聚类的动态过程建模为进化博弈理论,证明均衡点与优化问题解的一一对应关系,并推导出用于求解聚类的动力学方程。仿真试验表明,该算法能够在未知分簇数量的前提下实现准确聚类,并具有较强的鲁棒性。 Clustering is an effective method to compress data in the visualization area. In order to solve the challenge upon high-order similarities and previously unknown number of classes in visual association rule mining, a cluster approach based on the evolutionary game theory is proposed. Firstly, the hypergraph method is used to describe the high-order similarities among rules. Secondly, the dynamic process of hypergraph clustering is modeled as evolutionary game theory, and the corresponding relation between the equilibrium point and the solution of the optimization problem is proved, and the dynamics for iterative clustering is derived. Finally, simulation results over synthetic data show that the proposed algorithm can achieve accurate hierarchical clustering under the condition of unknown number of clusters, and has strong robustness.
作者 李政廉 吉立新 黄瑞阳 刘树新 LI Zhenglian;JI Lixin;HUANG Ruiyang;LIU Shuxin(National Digital Switching System Engineering & Technological R&D Center, Zhengzhou 450002, China)
出处 《信息工程大学学报》 2018年第6期749-754,共6页 Journal of Information Engineering University
关键词 可视化 进化博弈理论 超图 聚类 visualization evolutionary game theory hypergraph cluster
  • 相关文献

参考文献2

二级参考文献16

  • 1刘波,潘久辉.基于频繁模式图的多维关联规则挖掘算法研究[J].电子学报,2007,35(8):1612-1616. 被引量:4
  • 2E G Hetzler, W M Harris, S Harvre et al. Visualizing the full spectrum of document relationships. In: Proc of the 5th Int'l Society for Knowledge Organization Conference. Würzburg: Ergon, 1998. 168~175
  • 3P C Wong, P Whitney, J Thomas. Visualizing association rules for text mining. In: Proc of IEEE Symposium on Information Visualization(INFOVIS'99). San Francisco: IEEE Computer Society, 1999. 120~123
  • 4M Hao, M Hsu, U Dayal et al. Market basket analysis visualization on a spherical surface. HP Labs, Technical Report: HPL-2001-3, 2001
  • 5H Toivonen, M Klemettinen, P Ronkainen et al. Pruning and grouping discovered association rules. The ECML-95 Workshop on Statistics, Machine Learning, and Knowledge Discovery in Databases, Heraklion, 1995
  • 6G K Gupta, A Strehl, J Ghosh. Distance based clustering of association rules. In: Proc of ANNIE, St. Louis, Missouri: ASME Press, 1999. 759~764
  • 7M Ankerst, M Breunig, H P Kriegel et al. OPTICS: Ordering points to identify the clustering structure. In: Proc of 1999 ACM-SIGMOD Int'l Conf Management of Data (SIGMOD'99). Philadephia: ACM Press, 1999. 49~60
  • 8J Han, Y Fu. Discovery of multiple level association rules from large databases. In: Proc of the 21st Int'l Conf on Very Large Databases(VLDB'95). Zurich: Morgan Kaufmann, 1995. 420~431
  • 9R Srikant, R Agrawal. Mining generalized association rules.In:Proc of the 21st Int'l Conf on Very Large Databases(VLDB'95). Zurich: Morgan Kaufmann, 1995. 407~419
  • 10A Savasere, E Omiecinski, S Navathe. Mining for strong negative associations in a large database of customer transactions. In: Proc of the 14th Int'l Conf on Data Engineering. Orlando: IEEE Computer Society, 494~502

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部