期刊文献+

Bi2MoO6/MIL-100(Fe)复合光催化剂的可见光催化性能研究

Visible Light Photocatalytic Activity of Bi2MoO6/MIL-100(Fe) Composite Photocatalyst
下载PDF
导出
摘要 采用“水热法”制备了Bi2MoO6/MIL-100(Fe)复合光催化剂,并对其结晶结构、形貌特征、比表面积、光学特性等进行了分析。研究结果表明,以MIL-100(Fe)为支撑体,Bi2MoO6纳米粒子为表面生长的复合光催化剂能够被成功制备,其可见光利用率和光催化性能显著提高。以罗丹明B(RhB)为目标污染物的降解研究结果表明,当MIL-100(Fe)的质量分数为9%时,复合光催化剂的活性最强,RhB的降解率能够达到88.46%,光降解速率是纯Bi2MoO6的2.46倍。 Bi2MoO 6/MIL-100(Fe) composite photocatalyst is prepared by solvothermal method, then XRD, SEM, XPS, PL and UV-Vis DRS are used to analyze the elemental composition, crystal structure, morphology, specific surface area and optical properties of the composite. The results show that the composite photocatalyst with surface growth of Bi2MoO 6 nanoparticles is successfully prepared with MIL-100(Fe) as support, and the close interaction between MIL-100(Fe) and Bi2MoO 6 nanoparticles is relatively narrow. And the greatly increased specific surface area makes the visible light utilization efficiency and photocatalytic performance of the composite photocatalyst significantly improve. Degradation experiments with Rhodamine B (RhB) as the target pollutant show that the photocatalytic activity of Bi2MoO 6/MIL-100(Fe) composite photocatalyst is the strongest when MIL-100(Fe) is added at 9%;the degradation rate of RhB reaches 88.46%, and the photodegradation rate is 0.02174 min -1 , which is2.46 times that of pure Bi2MoO 6.
作者 杨斌 冯飞龙 陈广锋 YANG Bin;FENG Feilong;CHEN Guangfeng(Maoming R&P Petrochemical Engineering Co.,Ltd., Maoming 525000, China)
出处 《广东石油化工学院学报》 2019年第4期21-25,共5页 Journal of Guangdong University of Petrochemical Technology
关键词 Bi2MoO6 MIL-100(Fe) 光催化 可见光 Bi2MoO 6 MIL-100(Fe) photocatalysis visible-light
  • 相关文献

参考文献4

二级参考文献58

  • 1Fujishima A, Honda K. 1972. Electrochemical photolysis of water at a semiconductor electrode ~ J 1.Nature, 238 (5358) : 37-38.
  • 2Hoffmann M R, Martin S T, Choi W, et al. 1995. Environmental applications of semiconductor photocatalysis [ J ]. Chemical Reviews, 95 ( 1 ) : 69-96.
  • 3Colon G, Fernandez-Garcia M, Kubacka A. 2012. Advanced nanoarchitectures for solar photocatalytic applications [ J ]. Chemical Reviews, 112(3) : 1555-1614.
  • 4Fujishima A, Nakata K.2012.TiO2 photocatalysis : Design and applications [ J ]. Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 13 ( 3 ) : 169-189.
  • 5Chen X, Mao S S. 2007. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications [ J ]. Chemical Reviews, 107(7) :2891-2959.
  • 6Emeline A V, Serpone N. 2012. Semiconductor photocatalysis - past, present, and future outlook [ J ] .Journal of Physical Chemistry Letters, 3(5) :673-677.
  • 7Cheng L, Kang Y.2014.Selective preparation of Bi203 visible-light-driven photocatalyst by dispersant and calcination[ J~ .Journal of Alloys and Compounds, 585 : 85-93.
  • 8Jacobson A J, Mims C A, Puri M, et al. 1997. Propene oxidation on substituted 2 : ! bismuth molybdates and vanadates [ J 1. Catalysis Today, 37 ( l ) :43-49.
  • 9Kato H, Kobayashi H, Kudo A, et al. 2006. Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation [ J ]. Journal of Physical Chemistry B, 110 ( 36 ) : 17790-17797.
  • 10Bi J, Fu X, Li H, et al. 2007. Simple solvothermal routes to synthesize nanocrystalline Bi2Mo06 photocatalysts with different morphologies [ J ].Acta Materialia, 55 (14) :4-699-4705.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部