期刊文献+

地铁盾构施工地表变形的神经网络预测及应用 被引量:12

Prediction and application of neural network on surface deformation from subway shield tunneling construction
下载PDF
导出
摘要 为对城市地铁盾构隧道掘进引发的地表变形进行预测,以太原地铁某区间盾构隧道工程为例,通过敏感性分析方法确定影响盾构施工地表变形的主要土层参数与施工参数。在此基础上以主要影响因素为设计因子开展正交试验,将试验结果作为训练样本及测试样本,建立径向基函数(radial basis function,RBF)神经网络模型用于盾构施工地表变形的预测。结果表明,建立的RBF神经网络模型具有较高的精度,能够较好地反映地表变形与各主要影响因素之间的非线性关系,可以用于盾构施工地表变形的预测。 In order to predict the surface deformation caused by shield tunneling in urban subway,the tunnel shield tunnel project in Taiyuan was used as an example to determine the main soil parameters and construction parameters that affect the surface deformation through the sensitivity analysis method.Orthogonal experiments were conducted with the main influencing factors as design factors.The test results were used as training samples and test samples to develop radial basis function (RBF) neural network models for prediction of surface deformation in shield construction.The results show that the established RBF neural network model has higher precision and can better reflect the nonlinear relationship between surface deformation and main influencing factors.It can also be used to predict the surface deformation from shield construction.
作者 杨欢欢 杨双锁 罗百胜 YANG Huanhuan;YANG Shuangsuo;LUO Baisheng(College of Mining Engineering,Taiyuan University of Technology,Taiyuan 030024,China;China Railway No.3 Engineering Group Co.,Ltd.,Taiyuan 030024,China)
出处 《中国科技论文》 CAS 北大核心 2019年第6期625-629,共5页 China Sciencepaper
基金 国家自然科学基金资助项目(U1710111) 山西省重点研发计划重点项目(201703D111027)
关键词 RBF神经网络 盾构隧道 敏感性分析 地表变形 预测模型 RBF neural network shield tunnel sensitivity analysis surface deformation prediction model
  • 相关文献

参考文献16

二级参考文献147

共引文献363

同被引文献186

引证文献12

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部