期刊文献+

基于双空间模糊辨识关系的多标记特征选择 被引量:8

Multi-label Feature Selection Based on Fuzzy Discernibility Relations in Double Spaces
下载PDF
导出
摘要 已有的基于模糊粗糙集的多标记特征选择算法多从单一的样本空间刻画属性区分能力,忽视属性对标记的区分能力.基于这一认识,文中同时从样本和标记两个空间出发,提出基于双空间模糊辨识关系的多标记特征选择算法.首先,基于模糊辨识关系分别从样本和标记角度定义两种多标记属性重要性度量,然后通过权重融合的方式融合两种度量,基于融合后的度量,运用前向贪心算法构建多标记特征选择算法.在5个数据集上的对比实验验证本文算法的有效性. The existing multi-label feature selection algorithms based on fuzzy rough sets characterize the ability of distinguishing attributes from single sample space,while the ability of attributes distinguishing labels is ignored.Therefore,a multi-label feature selection algorithm based on fuzzy discernibility relations in double spaces is proposed.Firstly,two multi-label attribute measures based on fuzzy discernibility relations are defined from the perspective of samples and labels respectively.Then,two different measures are combined by introducing weights.Finally,a multi-label feature selection algorithm is constructed based on the combined measures by utilizing the forward greedy algorithm.Results of comparative experiments on five multi-label datasets verify the effectiveness of the proposed algorithm.
作者 姚二亮 李德玉 李艳红 白鹤翔 张超 YAO Erliang;LI Deyu;LI Yanhong;BAI Hexiang;ZHANG Chao(School of Computer and Information Technology,Shanxi University,Taiyuan 030006;Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education,Shanxi University,Taiyuan 030006)
出处 《模式识别与人工智能》 EI CSCD 北大核心 2019年第8期709-717,共9页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61672331,61573231,61432011,61806116) 山西省重点研发计划项目(No.201803D42102) 山西省自然科学基金项目(No.201701D121055,201801D221175) 山西省高等学校科技创新项目(No.201802014) 山西省高等学校优秀成果培育项目(2019SK036) 山西省高等学校青年科研人员培育计划资助~~
关键词 多标记学习 特征选择 模糊粗糙集 模糊辨识关系 Multi-label Learning Feature Selection Fuzzy Rough Sets Fuzzy Discernibility Relation
  • 相关文献

参考文献2

二级参考文献20

  • 1Sun Liang,Ji Shuiwang,Ye Jieping.Multi-Label Dimensionality Reduction[M].Florida:CRC Press,2013:20-22.
  • 2Fisher R A.The use of multiple measurements in taxonomicproblems[J].Annals of Eugenics,1936,7(2):179-188.
  • 3Wold H.Estimation of principal components and related models by iterative least squares[J].Multivariate Analysis,1966,1:391-420.
  • 4Zhang Yin,Zhou Zhihua.Multi-label dimensionality reduction via dependence maximization[J].ACM Trans on Knowledge Discovery from Data(TKDD),2010,4(3):14.
  • 5Zhang Minling,Pena J M,Robles V.Feature selection formulti-label naive Bayes classification[J].Information Sciences,2009,179(19):3218-3229.
  • 6Hu Qinghua,Yu Daren,Liu Jinfu,et al.Neighborhoodrough set based heterogeneous feature subset selection[J].Information Sciences,2008,178(18):3577-3594.
  • 7Yu Ying,Pedrycz W,Miao Duoqian.Neighborhood roughsets based multi-label classification for automatic imageannotation[J].International Journal of Approximate Reasoning,2013,54(9):1373-1387.
  • 8Yu Ying,Pedrycz W,Miao Duoqian.Multi-labelclassification by exploiting label correlations[J].Expert Systems with Applications,2014,41(6):2989-3004.
  • 9Trohidis K,Tsoumakas G,Kalliris G,et al.Multi-labelclassification of music into emotions[C]//Proc of the 9th Inl Society for Music Information Retrieval.Philadelphia:ISMIR,2008:325-330.
  • 10Briggs F,Huang Y,Raich R,et al.The 9 annual MLSPcompetition:New methods for acoustic classification of multiple simultaneous bird species in a noisy environment[C]//Proc of 2013 IEEE Int Workshop on Machine Learning for Signal Processing.Los Alamitos.CA:IEEE,2013:22-25.

共引文献110

同被引文献74

引证文献8

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部