期刊文献+

Novelty phase synthesis mechanism and morphology in resin-bonded Al–Al2O3–TiO2 composites at high temperatures under flowing N2 被引量:4

Novelty phase synthesis mechanism and morphology in resin-bonded Al–Al2O3–TiO2 composites at high temperatures under flowing N2
下载PDF
导出
摘要 An Al–AlN core–shell structure is beneficial to the performance of Al–Al2O3 composites. In this paper, the phase evolution and microstructure of Al–Al2O3–TiO2 composites at high temperatures in flowing N2 were investigated after the Al–AlN core–shell structure was created at 853 K for 8 h. The results show that TiO2 can convert Al into Al3Ti(~1685 K), which reduces the content of metal Al and rearranges the structure of the composite. Under N2 conditions, Al3Ti is further transformed into a novelty non-oxide phase, TiCN. The transformation process can be expressed as follows: Al3Ti reacts with C and other carbides(Al4C3 and Al4O4C) to form TiCx(x < 1). As the firing temperature increases, Al3Ti transforms into a liquid phase and produces Ti(g) and TiO(g). Finally, Ti(g) and TiO(g) are nitrided and solid-dissolved into the TiCx crystals to form a TiCN solid solution. An Al–AlN core–shell structure is beneficial to the performance of Al–Al2O3 composites. In this paper, the phase evolution and microstructure of Al–Al2O3–TiO2 composites at high temperatures in flowing N2 were investigated after the Al–AlN core–shell structure was created at 853 K for 8 h. The results show that TiO2 can convert Al into Al3Ti(~1685 K), which reduces the content of metal Al and rearranges the structure of the composite. Under N2 conditions, Al3Ti is further transformed into a novelty non-oxide phase, TiCN. The transformation process can be expressed as follows: Al3Ti reacts with C and other carbides(Al4C3 and Al4O4C) to form TiCx(x < 1). As the firing temperature increases, Al3Ti transforms into a liquid phase and produces Ti(g) and TiO(g). Finally, Ti(g) and TiO(g) are nitrided and solid-dissolved into the TiCx crystals to form a TiCN solid solution.
出处 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第9期1177-1185,共9页 矿物冶金与材料学报(英文版)
基金 financial support from the National Natural Science Foundation of China (No. 51872023)
关键词 aluminum TITANIUM oxide alloys TITANIUM CARBONITRIDE aluminum titanium oxide alloys titanium carbonitride
  • 相关文献

同被引文献15

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部