摘要
针对地面防空群的维修任务规划问题,建立维修任务规划流程,以维修任务的优先级、维修时间和维修保障资源消耗为目标,建立了地面防空群维修任务规划模型,根据战场环境特点,基于置信度法确定多目标参量的权重,将多目标优化问题转化为单目标问题,并采取改进的自适应粒子群优化算法对模型进行求解。通过实例验证,该方法在收敛速度及求解结果质量上均优于传统粒子群算法,可以有效解决地面防空群的维修任务规划问题,对部队维修保障决策具有一定的参考价值。
The maintenance task planning process is built for maintenance task planning problem of surface air defense group. The maintenance task planning model is established as the target of priority of maintenance task,maintenance time,maintenance and support resources consumption.According to the characteristics of battlefield environment,multi-objective optimization problem is transferred to single objective optimization problem based on confidence level method for giving the weight of multi target parameters. A modified self-adaptive particle swarm optimization(MPSO) is used to solve the model. At last,a simulation example proves rapidity and effectiveness of MPSO which is suitable for solving maintenance task planning problem of surface air defense group. This method is more superior to traditional particle group algorithm in convergence rate and solution result quality.This paper can provide references for army maintenance support decision making.
作者
左文博
赵英俊
张迪哲
和柳
ZUO Wen-bo;ZHAO Ying-jun;ZHANG Di-zhe;HE Liu(School of Air Defense and Antimissile,Air Force Engineering University,Xi’an 710051,China;Unit 93942 of PLA,Xianyang 712000,China)
出处
《火力与指挥控制》
CSCD
北大核心
2019年第8期89-93,共5页
Fire Control & Command Control
基金
全军军事类研究生基金资助项目(2016JY298)
关键词
地面防空群
装备维修
任务规划
MPSO算法
多目标优化
surface air defense group
equipment maintenance
task planning
MPSO algorithm
multi-objective optimization