期刊文献+

基于信息熵和用户兴趣时间性的协同过滤算法 被引量:3

Collaborative Filtering Algorithm Based on Information Entropy and Timeliness of User Interest
下载PDF
导出
摘要 针对传统协同过滤推荐算法无法及时适应用户兴趣变化的问题,提出用信息熵来计算相似度的方法,并将两个用户对同一物品评分值的差值以及Jaccard系数加权到其中。通过在相似度计算中加入用户兴趣时间性的数据权重,提出基于信息熵和用户兴趣时间性的协同过滤算法。结果表明,该算法能够适应用户兴趣随时间变化的特性,可以有效提高推荐的精确度。 The traditional collaborative filtering recommendation algorithm can't adapt to the change of user interest in real time.This paper proposed an information entropy algorithm on similarity calculation.The difference values between two users on the same item and the Jaccard coefficient were weighted to add in the similarity calculation.By adding the data weight of interest time in similarity calculation,a collaborative filtering algorithm based on information entropy and timeliness of user interest was proposed.The results show that the algorithm can adapt to the change of user interest with time,and effectively improve the recommendation accuracy.
作者 石秀金 雷前春 SHI Xiujin;LEI Qianchun(College of Computer Science and Technology, Donghua University, Shanghai 201620, China)
出处 《东华大学学报(自然科学版)》 CAS 北大核心 2019年第4期555-558,570,共5页 Journal of Donghua University(Natural Science)
关键词 个性化推荐 协同过滤 信息熵 用户兴趣 时间性 personalized recommendation collaborative filtering information entropy user interest timeliness
  • 相关文献

参考文献4

二级参考文献73

  • 1陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 2Goldberg D,Nichols D,Oki B,Terry D.Using collaborative filtering to weave an information tapestry.Communications of the ACM,1992,35(12):61-70.
  • 3Resnick P,Iacovou N,Suchak M,Bergstorm P,Riedl J.GroupLens:An open architecture for collaborative filtering of netnews//Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work.Chapel Hill,North Carolina,United States,1994:175-186.
  • 4Shardanand U,Maes P.Social information filtering:Algorithms for automating "word of mouth"//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:210-217.
  • 5Hill M,Stead L,Furnas G.Recommending and evaluating choices in a virtual community of use//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:194-201.
  • 6Sarwar B M,Karypis G,Konstan J A,Riedl J.Application of dimensionality reduction in recommender system-A case study//Proceedings of the ACM WebKDD Web Mining for E-Commerce Workshop.Boston,MA,United States,2000:82-90.
  • 7Massa P,Avesani P.Trust-aware collaborative filtering for recommender systems.Lecture Notes in Computer Science,2004,3290:492-508.
  • 8Vincent S-Z,Boi Faltings.Using hierarchical clustering for learning the ontologies used in recommendation systems//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Jose,California,United States,2007:599-608.
  • 9Park S-T,Pennock D M.Applying collaborative filtering techniques to movie search for better ranking and browsing//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Jose,California,United States,2007:550-559.
  • 10Tomoharu I,Kazumi S,Takeshi Y.Modeling user behavior in recommender systems based on maximum entropy//Proceedings of the 16th International Conference on World Wide Web.Banff,Alberta,Canada,2007:1281-1282.

共引文献340

同被引文献37

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部