期刊文献+

基于高斯变异和自适应参考点的MOPSO优化算法 被引量:6

MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION BASED ON GAUSSIAN MUTATION AND ADAPTIVE REFERENCE POINT
下载PDF
导出
摘要 针对MOPSO优化算法在优化多目标问题当中收敛程度较差和容易进入部分最优的缺点,提出一种基于高斯变异和自适应参考点融合的MOPSO优化算法。利用高斯变异位置更新方法改善解集提前停止寻优现象,提高MOPSO优化算法在寻找最优过程中寻找解集的多样性;采用自适应参考点的外部档案维护策略,将收敛性较差的粒子剔除,提高算法的收敛性。实验结果表明:改进的MOPSO算法同传统的MOPSO算法相比,反向代距离和超体积比有了明显的改善,具有更好的解集多样性和收敛性。 Aiming at the problem that multi-objective particle swarm optimization was slower and easy to fall into local optimum in solving multi-objective optimization problems, we proposed a multi-objective particle swarm optimization algorithm based on Gaussian mutation and adaptive reference point fusion. The Gaussian mutation location update method was used to improve the premature phenomenon of the solution, and the diversity of the search solution in the optimization process of the multi-objective particle swarm optimization algorithm was improved. The external file maintenance strategy of the adaptive reference point was used to eliminate the particles with poor convergence and improve the convergence of the algorithm. The experimental results show that the improved multi-objective particle swarm optimization has significantly improved reverse generation distance and super volume ratio compared with the traditional multi-objective particle swarm optimization algorithm, and has better diversity and convergence.
作者 高庆吉 王瑞雪 谈政 Gao Qingji;Wang Ruixue;Tan Zheng(College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China)
出处 《计算机应用与软件》 北大核心 2019年第9期255-259,共5页 Computer Applications and Software
基金 中央高校基本科研业务费项目(ZYGX2018035)
关键词 多目标优化 粒子群算法 高斯变异 自适应参考点 Multi-objective optimization Particle swarm optimization Gaussian mutation Adaptive reference point
  • 相关文献

参考文献6

二级参考文献38

  • 1于繁华,刘寒冰,戴金波.求解多目标优化问题的灰色粒子群算法[J].计算机应用,2006,26(12):2950-2952. 被引量:13
  • 2Deb K. Multi-objective optimization using evolutionary algorithms[M]. Chichester: Wiley, 2001.
  • 3Sierra M R, Coello C A C. Multi-objective particle swarm optimizers: A survey of the state-of-the-art[J]. Int J of Comoutational Intellizence Research, 2006, 2(3): 287-308.
  • 4Coello C A C, Lechuga M S. MOPSO: A proposal for multiple objective particle swarm optimization[C]. IEEE Congress on Evolutionary Computation. Piscataway: IEEE Press, 2002: 1051-1056.
  • 5Raquel C R, Jr P C N. An effective use of crowding distance in multiobjective particle swarm optimization[C].Proc of the 2005 Workshops on Genetic and Evolutionary Computation. Washington: ACM Press, 2005: 257-264.
  • 6Pulido G T, Coello C A C. Using clustering technique to improve the performance of a multi-objective particle swarm optimizer[J]. Lecture Notes on Computer Science, 2004, 3102: 225-237.
  • 7Lechuga M S, Rowe J. Particle swarm optimization and fitness sharing to solve multi-objective optimization problems[C]. IEEE Congress on Evolutionary Computation. Edinburgh: IEEE Press, 2005:1204-1211.
  • 8Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Trans on Evolutionary Computation, 2004, 8(3): 256-279.
  • 9Yen G G, Leong W E Dynamic multiple swarms in multiobjective particle swarm optimization[J]. IEEE Trans on Systems, Man and Cybernetics, Part A, 2009, 39(4): 890-911.
  • 10Li Z Y, Xu K, Liu S B, et al. Quantum multi-objective evolutionary algorithm with particle swarm optimization method[C]. The 4th Int Conf on Natural Computation. Ji'nan, 2008: 672-676.

共引文献96

同被引文献46

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部