期刊文献+

一种快速优化拉丁超立方试验设计方法 被引量:13

Sampling Design Method of Fast Optimal Latin Hypercube
下载PDF
导出
摘要 工程设计优化中,优化试验设计方法常常用于求解大型复杂系统问题。针对传统优化试验设计方法计算耗时长、效率低的问题,提出一种快速优化拉丁超立方试验设计方法:在拉丁超立方抽样框架下,采用基于最大最小距离准则连续局部枚举方法设计生成高性能小尺寸基础样本,然后利用平移传播算法通过"平移"基础样本快速获得大尺寸试验样本。结合提出的样本尺寸调整策略,使该方法可以快速得到空间填充性能和映射性能良好的任意尺寸试验样本。测试结果表明快速优化拉丁超立方试验设计方法能够兼顾设计效率和样本性能,优于已有典型试验设计方法。 In engineering design optimization, the optimal sampling design method is usually used to solve large-scale and complex system problems. A sampling design(FOLHD) method of fast optimal Latin hypercube is proposed in order to overcome the time-consuming and poor efficiency of the traditional optimal sampling design methods. FOLHD algorithm is based on the inspiration that a near optimal large-scale Latin hypercube design can be established by a small-scale initial sample generated by using Successive Local Enumeration method and Translational Propagation algorithm. Moreover, a sampling resizing strategy is presented to generate samples with arbitrary size and owing good space-filling and projective properties. Comparing with the several existing sampling design methods, FOLHD is much more efficient in terms of the computation efficiency and sampling properties.
作者 叶鹏程 潘光 高山 YE Pengcheng;PAN Guang;GAO Shan(School of Marine Science and Technology, Northwestern Polytechnical University, Xi′an 710072, China;Key Laboratory for Unmanned Underwater Vehicle, Northwestern Polytechnical University, Xi′an 710072, China)
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2019年第4期714-723,共10页 Journal of Northwestern Polytechnical University
基金 国家重点研发计划(2016YFC0301300) 国家自然科学基金(61803306,11502210,51709229)资助
关键词 试验设计 优化试验设计方法 拉丁超立方设计 平移传播算法 design of experiments optimal sampling design method latin hypercube design translational propagation algorithm
  • 相关文献

参考文献2

二级参考文献12

  • 1McKay M D, Beckman R J, Conover W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 1979,21 (2): 239-245.
  • 2Owen A. Orthogonal arrays for computer experiments, integra tion and visualization [J]. Statistica Sinica, 1992, 2 (2):439 -452.
  • 3Tang B. Orthogonal array based Latin hypercubes[J], Journal of the American Statistical Association, 1993, 88 (424):1392 -1397.
  • 4Johnson M, Morre L, Ylvisaker D. Minimax and maximum distance designs[J]. Journal of Statistical Planning and Inference, 1990,26(2) : 131 -- 148.
  • 5Morris M D, Mitchell T J. Exploratory designs for computational experiments[J]. Journal of Statistical Planning and Inference 1995,43(3) : 381 - 402.
  • 6Hickernell F J. A generalized discrepancy and quadrature error bound [J]. Mathematics of Computation, 1998, 67 ( 221 ): 299 -322.
  • 7Joseph V R, Ying Hung. Orthogonal-maximin Latin hypercube designs[J]. Statistica Sinica, 2008, 18 (1) : 171 - 186.
  • 8Jin R, Chen W, Sudjianto A. An efficient algorithm for con strutting oplimal design of computer experiments[J]. Journal of statistical planning and inference, 2005,134 ( 1 ) : 268 - 287.
  • 9Ye K Q. Orthogonal column Latin hypercubes and their application in computer experiments[J]. Journal of the American Statistical Association, 1998,93(444) : 1430 - 1439.
  • 10Fang K T, Ma C X, Winker P. Centered L2-discrepancy of random sampling and Latin hypercube design and construction of uniform designs[J]. Mathematics of Computation, 2002,71 (237) : 275 - 296.

共引文献62

同被引文献128

引证文献13

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部