摘要
无人机航拍影像空间分辨率高,纹理信息丰富,但其光谱信息匮乏,不利于遥感信息解译。为此提出一种基于脉冲耦合神经网络模型的融合算法,通过计算非规则区域的统计特性,将无人机航拍影像的亚米级高空间分辨率信息注入到遥感卫星多光谱影像中,以获取具有亚米级空间分辨率和高的光谱分辨率的遥感融合影像。通过定性和定量的对比实验,表明该算法优于经典的遥感影像融合方法,同时验证了其在减小光谱扭曲和空间纹理细节保持等方面的有效性。
Aerial images captured by UAV have high spatial resolution and rich texture.However,the lack of spectral information makes it difficult to use for image interpretation.Therefore,a novel pulse-coupled neural network based fusion algorithm is proposed.Both the sub-meter spatial resolution and high spectral resolution can be obtained by injecting the information of sub-meter spatial resolution of UAV to the multispectral image of the remote sensing satellite,which is achieved by performing the statistics in irregular regions of the remote sensing images.The qualitative and quantitative experiments demonstrate that the proposed method outperforms the traditional remote sensing fusion methods.The validity of the fusion algorithm in reducing spectral distortion and preserving spatial texture details is also verified by comparative experiments.
作者
李小军
闫浩文
杨树文
牛丽峰
LI Xiaojun;YAN Haowen;YANG Shuwen;NIU Lifeng(Faculty of Geomatics,Lanzhou Jiaotong University,Lanzhou 730070,China;Gansu Provincial Engineering Laboratory for National Geographic State Monitoring,Lanzhou 730070,China)
出处
《遥感信息》
CSCD
北大核心
2019年第4期11-15,共5页
Remote Sensing Information
基金
国家重点研发计划重点专项(2017YFB0504201)
国家重点研发计划重点专项(2017YFB0504203)
国家自然科学基金(41861055、41761082)
兰州交通大学优秀平台支持(201806)
关键词
遥感图像融合
无人机航拍影像
脉冲耦合神经网络
多光谱影像
图像分割
remote sensing image fusion
UAV aerial image
pulse-coupled neural network
multispectral image
image segmentation