期刊文献+

一维抛物方程界面问题的紧致有限体积格式

THE COMPACT FINITE VOLUME SCHEME FOR INTERFACE PROBLEMS OF ONE-DIMENSIONAL PARABOLIC EQUATIONS
下载PDF
导出
摘要 本文主要讨论了带有界面的一维抛物方程的初边值问题.首先对原方程在控制单元内的积分项在空间上采用四阶紧致格式,然后在时间上采用二阶的差分格式,构造了问题的紧致有限体积格式.数值算例表明该格式具有较好的计算效果. In this paper,the initial boundary value problem of one-dimensional parabolic equation with interface is discussed.In order to obtain the compact finite volume scheme of the problem,the integral items of the original equation are approximated by fourth order compact scheme in space and the second order difference scheme is applied in time.Numerical example shows that the scheme is effective.
作者 于倩 杨青 Yu Qian;Yang Qing(School of Mathematics and Statistics,Shandong Normal University,250358,Jinan,China)
出处 《山东师范大学学报(自然科学版)》 CAS 2019年第3期271-278,共8页 Journal of Shandong Normal University(Natural Science)
基金 山东省自然科学基金资助项目(ZR2017MA020)
关键词 抛物方程的初边值问题 间断系数 紧致有限体积格式 initial boundary value problem parabolic equation discontinuous coefficient the compact finite volume scheme
  • 相关文献

参考文献3

二级参考文献25

  • 1SUN Zhizhong. An unconditionally stable and O(r^2+h^4) order L∞ convergent difference scheme for linear parabolic equations with variable coeffcients[J]. Numerical Methods for Partial Differential Equations, 2001,17 :619-631.
  • 2L1 Weidong,SUN Zhizhong. An analysis for a high-order difference scheme for numerical solution to uxx= F(x, t, u, u,, ux ) [J]. Numerical Methods for Partial Differential Equations, 2006,22: 897-919.
  • 3LI Weidong,SUN Zhizhong,ZHAO Lei. An analysis for a high-order difference scheme for numerical solution to ux = A(x, t ) u= + F(x, t, u, u,, ux) [J]. Numerical Methods for Partial Differential Equations, 2007,23 : 484-498.
  • 4Zhao Jennifer,DAI Weizhong, NIU Tianchan. Fourth-order compact schemes of a heat conduction poblemwith Neumann boundary condition[J]. Numerical Methods for Paral Differential Equations, 2007,23: 949-959.
  • 5SUN Zhizhong. Compact difference schemes for heat equation with Neumann boundary conditions[J]. Numerical Methods for Partial Differential Equations, 2009,25 :1320-1341.
  • 6DAI Weizhong. A new accurate finite difference schemc for Neumann (insulated) boundary condition of heat conduction[J]. International Journal of Thermal Sciences, 2010,49 :571-579.
  • 7DAI Weizhong, Tzou Da Yu. A fourth-order compact finite difference scheme for solving an N-Carrier system with Neumann boundary conditions[J]. Numerical Methods for Partial Differential Equations, 2011,26:274-289.
  • 8DAI Weizhong. An improved compact finite difference scheme for solving an N-Carrier system with Neumann boundary conditions[J]. Numerical Methods for Partial Differential Equations, 2011,27 : 436-446.
  • 9GAO Guanghua,WANG Tongke. Cubic superconvergent finite volume element method for one-dimensional elliptic and parabolic problem[J].Journal of Computational and Applied Mathematics, 2010,233: 2285-2301.
  • 10Kadalbajoo Mohan K, Kumar Devendra. Geometric mesh FDM for self-adjoint singular perturbation boundary value problems[J].Applied Mathematics and Computation,2007,190(2): 1646-1656.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部