期刊文献+

混合指数跳扩散模型下远期生效期权的定价 被引量:1

Pricing of forward starting options using the mixed-exponential jump diffusion model
下载PDF
导出
摘要 分别研究了市场利率为常数和随机利率时混合指数跳扩散模型下远期生效期权的定价问题.假定风险资产价格满足混合指数跳扩散过程,通过测度变换,逆拉普拉斯变换和无套利定价原理得到了该模型下远期生效看涨期权的定价公式.此外,利用看涨-看跌期权的平价关系得到了远期生效看跌期权的价值. The pricing of forward starting options using the mixed-exponential jump diffusion model is studied with the market interest rate being constant and stochastic respectively. Based on the assumption that the risk asset price dynamic follows the mixed-exponential jump diffusion process, and by using the measure of change, the inverse Laplace transform, and the non-arbitrage pricing principle, the pricing formulas of the forward starting call option are obtained. Furthermore, the price of forward starting put options is obtained by applying the call-put parity relationship.
作者 林涵彬 苏小囡 王伟 LIN Hanbin;SU Xiaonan;WANG Wei(School of Mathematics and Statistics, Ningbo University, Ningbo 315211, China;School of Statistics and Mathematics, Nanjing Audit University, Nanjing 211815, China;Jiangsu Key Laboratory of Financial Engineering, Nanjing 211815, China)
出处 《宁波大学学报(理工版)》 CAS 2019年第5期104-109,共6页 Journal of Ningbo University:Natural Science and Engineering Edition
基金 浙江省自然科学基金(LY17G010003) 江苏省高校自然科学基金(14KJB110014) 江苏省金融工程重点实验室开放基金(NSK2015-12)
关键词 跳扩散模型 拉普拉斯变换 平价关系 jump diffusion model Laplace transform parity relationship
  • 相关文献

参考文献1

二级参考文献16

  • 1Hamilton, J.D., A new approach to the economic analysis of nonstationary time series and the business cycle, Econometrica, 57(2)(1989), 357-384.
  • 2Elliott, R.J., Chan, L.L. and Siu, T.K., Option pricing and Esscher transform under regime switching, Annals of Finance, 1(4)(2005), 423-432.
  • 3Elliott, R.J. and Osakwe, C.J.U., Option pricing for pure jump processes with Markov switching compensators, Finance and Stochastics, 10(2)(2006), 250-275.
  • 4Boyle, P. and Draviam, T., Pricing exotic options under regime switching, Insurance: Mathematics and Economics, 40(2)(2007), 267-282.
  • 5Bo, L.J., Wang, Y.J. and Yang, X.W., Markov-modulated jump diffusions for currency option pricing, Insurance: Mathematics and Economics, 46(3)(2010), 461-469.
  • 6Wang, W. and Wang, W.S., Pricing vulnerable options under a Markov-modulated regime switching model, Communications in Statistics - Theory and Methods, 39(19)(2010), 3421-3433.
  • 7van der Hoek, J. and Elliott, R.J., American option prices in a Markov chain market model, Applied Stochastic Models in Business and Industry, 28(1)(2012), 35-59.
  • 8Kruse, S. and NSgel, U., On the pricing of forward starting options in Heston's model on stochastic volatility, Finance and Stochastics, 9(2)(2005), 233-250.
  • 9Heston, S.L., A closed-form solution for options with stochastic volatility with applications to bond and currency options, The Review of Financial Studies, 6(2)(1993), 327-343.
  • 10Wang, W., Wang, W.S. and Wang, S., Pricing forward starting call option in a jump diffusion model, Journal of East China Normal University (Natural Sciences), 2009(5)(2009), 107-117.

共引文献3

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部