摘要
研究三维轴对称Euler方程组光滑解的增长,目的是对三维Euler方程组找尽可能快增长的解,探索方程组的全局正则性。通过适当选取速度场的一个分量,可把三维轴对称Euler方程组去耦,从而给出一族三维光滑无界轴对称区域及其上Euler方程组对时间有指数增长的轴对称全局光滑解。通过类似的方法得到多种平面区域上Euler方程的显式稳态解。
A study was made of the growth of smooth three-dimensional axisymmetric incompressible Euler flows.The goal was to find flows of fastest possible growth and investigate the global regularity issue of the three-dimensional Euler equations.Through aptly choosing a velocity component,the three-dimensional axisymmetric Euler system can be decoupled with a family of three-dimensional smooth unbounded axisymmetric domains and smooth solutions of the Euler equations with exponential growth on them constructed.Similar methods were used to obtain stationary Euler flows in various planar domains.
作者
孟德嘉
邓大文
MENG Dejia;TANG Taiman(School of Mathematics and Computational Science,Xiangtan University,Xiangtan 411105,Hunan,China)
出处
《咸阳师范学院学报》
2019年第4期9-12,共4页
Journal of Xianyang Normal University
关键词
轴对称Euler方程
光滑解
光滑区域
指数增长解
二维稳态解
axisymmetric Euler equations
smooth solution
smooth domain
solutions of exponential growth
two dimensional stationary solution