摘要
提出基于神经网络的动作识别方法分析,可直接对时间序列数据进行处理,自动提取特征值,免去了人工提取特征值的繁琐过程。通过采集10个受试者的原始加速度数据,采用基于TensorFlow搭建的神经网络模型进行训练,从而对动作进行识别。实验结果表明:该系统能够快速有效的区分走、慢跑,上、下楼梯四种相似度较高的动作,平均识别率高达96.67%,最后和当前识别率高的两种传统机器学习方法相比较。
This paper proposes a neural network-based motion recognition method analysis,which can directly process time series data and automatically extract feature values,eliminating the cumbersome process of manually extracting feature values.By collecting the original acceleration data of 10 subjects,the neural network model based on TensorFlow is used for training to identify the action.The experimental results show that the system can quickly and effectively distinguish between four kinds of similar motions,such as walking and jogging,and the upper and lower stairs.The average recognition rate is as high as 96.67%.Finally,compared with the two traditional machine learning methods with high current recognition rate.
作者
刘伟静
杨明静
LIU Wei-jing;YANG Ming-jing(College of Physics and Information Engineering, Fuzhou University, Fuzhou 350000, China)
出处
《电气开关》
2019年第4期67-69,73,共4页
Electric Switchgear
基金
LXKQ201501面向体域网融合超宽带传感器和惯性传感器的步态分析方法研究