期刊文献+

Graphene/RuO2 nanocrystal composites as sulfur host for lithium-sulfur batteries 被引量:2

Graphene/RuO2 nanocrystal composites as sulfur host for lithium-sulfur batteries
下载PDF
导出
摘要 An optimized graphene/RuO2/S composite is prepared by hydrothermal growth of RuO2 particles on graphene oxide sheets as the positive electrode for rechargeable lithium-sulfur batteries. The electrode with 6.1 wt% RuO2 nanocrystals and a high sulfur content of 79.0 wt% delivers an optimal electrochemical performance with high residual capacities of 508 mAh g-1 after 200 cycles and 389 m Ah g-1 after800 cycles at 1 C with a low capacity decay of 0.054%. The RuO2 nanocrystals promote the redox reaction kinetics and facilitate the transformation of sulfur chemistry, leading to large improvements in reversibility and rate capability of the composite electrode. The density functional theory calculations signify the formation of Li–O and Ru–S bonds through chemical interactions between RuO2 and Li polysulfides while the adsorption energies between graphene and polysulfide species are much higher in the presence of RuO2 than that of the neat graphene acting alone. These discoveries support the efficient entrapment of polysulfides by the composite electrode to the benefit of enhanced cyclic stability of the battery. An optimized graphene/RuO2/S composite is prepared by hydrothermal growth of RuO2 particles on graphene oxide sheets as the positive electrode for rechargeable lithium-sulfur batteries. The electrode with 6.1 wt% RuO2 nanocrystals and a high sulfur content of 79.0 wt% delivers an optimal electrochemical performance with high residual capacities of 508 mAh g-1 after 200 cycles and 389 m Ah g-1 after800 cycles at 1 C with a low capacity decay of 0.054%. The RuO2 nanocrystals promote the redox reaction kinetics and facilitate the transformation of sulfur chemistry, leading to large improvements in reversibility and rate capability of the composite electrode. The density functional theory calculations signify the formation of Li–O and Ru–S bonds through chemical interactions between RuO2 and Li polysulfides while the adsorption energies between graphene and polysulfide species are much higher in the presence of RuO2 than that of the neat graphene acting alone. These discoveries support the efficient entrapment of polysulfides by the composite electrode to the benefit of enhanced cyclic stability of the battery.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第8期204-211,I0007,共9页 能源化学(英文版)
基金 financially supported by the Research Grants Council(GRF Projects 16212814 and 16208718) the Innovation and Technology Commission(ITF Project Code ITS/001/17)of Hong Kong SAR the technical assistance from the Materials Characterization and Preparation Facilities(MCPF) the Advanced Engineering Materials Facilities(AEMF)of HKUST
关键词 Enhanced redox reaction kinetics POLYSULFIDE adsorption Density functional theory LITHIUM SULFUR BATTERIES High SULFUR content Enhanced redox reaction kinetics Polysulfide adsorption Density functional theory Lithium sulfur batteries High sulfur content
  • 相关文献

同被引文献2

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部