期刊文献+

使用动态元件匹配技术的带隙基准源的设计 被引量:1

Design of a bandgap reference source with dynamic elements matching
下载PDF
导出
摘要 为了改善器件失配引起的误差对带隙基准精度及稳定性的影响,设计了一款基于BICMOS 0.15μm工艺的带隙基准电压源。电路使用传统的带隙基准结构,为了提高增益,采用两级放大器;为了解决器件失配造成的不稳定性,采用了动态元件匹配技术。经过spectre仿真表明:此基准源能够很好地改善器件失配带来的误差,从而保证基准源的精度以及稳定性,5.0V供电、温度在233K(-40℃)~378K(105℃)变化时,相比于没有使用动态元件匹配的电路,该电路最少能够减小68%的误差;典型温度298K(25℃)、电压在4.5~5.5V变化时,相比于没有使用动态元件匹配的电路,该电路最少能够减小70%的误差。仿真结果显示,电路具有高稳定性。 To improve the accuracy and stability problem of bandgap reference source caused by elements mismatching error, a bandgap reference source based on BICMOS 0.15μm BCD process was designed. The circuit is based on traditional bandgap reference structure with a two-stage amplifier for increasing gain. The technology of dynamic elements matching (DEM) was used to solve the elements mismatching problem. Spectre simulation results show that this reference circuit can solve the elements mismatching problem perfectly, ensuring the accuracy and stability of reference source. Under the power voltage of 5.0 V, with the temperature ranging from 233 K (-40℃) to 378 K(105℃), this circuit can reduce 68% of the error at least by comparison with the circuit without DEM;Under the temperature of 298 K (25℃), with the power voltage ranging from 4.5 V to 5.5 V, this circuit can reduce 70% of the error at least by comparison with the circuit without DEM. It can be concluded that this circuit is of high stability.
作者 杨志强 冯全源 YANG Zhiqiang;FENG Quanyuan(Institute of Microelectronics, Southwest Jiaotong University, Chengdu 611756, China)
出处 《应用科技》 CAS 2019年第5期34-38,共5页 Applied Science and Technology
基金 国家自然科学基金重点项目(61531016) 四川省科技支撑计划重点项目(2016GZ0059,2017GZ0110)
关键词 基准电压源 精度恶化 稳定性 高增益 运算放大器 差分电路 器件失配 动态元件匹配 band-gap reference source deterioration of accuracy stability high gain operational amplifier differentialcircuit elements mismatching dynamic elements matching
  • 相关文献

参考文献6

二级参考文献27

  • 1张红南,曾健平,田涛.分段线性补偿型CMOS带隙基准电压源设计[J].计测技术,2006,26(1):35-38. 被引量:4
  • 2王红义,来新泉,李玉山,陈富吉.采用二次曲线校正的CMOS带隙基准[J].电子器件,2007,30(4):1155-1158. 被引量:5
  • 3Banba H, Shiga H, Umezawa A, et al. A CMOS Bandgap Reference Circuit with Sub-1-V Operation[J]. IEEE Journal of Solid-State Circuits, 1999, 34(6): 1 020-1 032.
  • 4Boni A, Op-Amps and Startup Circuits for CMOS Bandgap References with Near 1-V Supply[J]. IEEE Journal of Solid-State Circuits, 2002, 37(10): 1 339-1 342.
  • 5Tesch B J, Pratt P M, Bacrania K, et al. 14-b 125 MSPS Digotal-to-Analog Converter and Bandgap Voltage Reference in 0.5 μm CMOS[A]. Proc of ISCAA99[C]. Orlando: IEEE, 1999. 452-455.
  • 6Rincon-Mora G A. Voltage References[M]. New York: John Wiley & Sons, Inc, 2002.
  • 7Enz C C, Vittoz E A, Krummenacher F. A CMOS Chopper Amplifier[J]. IEEE J Solid-State Circuits, 1981, 22(10): 708-715.
  • 8Bakker A, Thiele K, Huijsing J H. A CMOS Nested-Chopper Instrumentation Amplifier with 100-nV Offset[J]. IEEE Journal of Solid-State Circuits, 2000, 35(10): 1 877-1 883.
  • 9Jiang Y, Lee E K F. Design of Low-voltage Bandgap Reference Using Trans-impedance Amplifier[J]. IEEE Trans on Circuit SystⅡ, 2000, 47(6): 1 084-1 091.
  • 10Anh Tuan Phan,Chang Wan Kim,Moon Suk Jung. A novel 1.5V DC offset cancellation CMOS down conversion mixer[A].2005.3704-3707.

共引文献26

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部