期刊文献+

一种基于在线大数据的高频CPI指数的设计及应用 被引量:25

Design and Application of Novel CPI Based on Online Big Data
原文传递
导出
摘要 在数字经济时代探索如何运用在线大数据编制实时高频物价指标。研究方法:设计了中国第一套基于互联网在线大数据的居民消费价格指数,从多方面分析指数质量及其应用。研究发现:在线iCPI可实现各层次类别的日、周、月指数无滞后实时更新;指数数据从采集、清洗到加工和发布均由计算机自动进行,既节省人力又减少人为干预因素;指数在代表一般物价变化、精准捕捉典型事件影响、现时预测通货膨胀、实时监测宏观经济形势等方面表现突出。研究创新:首次采用在线大数据编制CPI,弥补了中国尚无实时高频物价指标的空白。研究价值:在线iCPI是传统CPI的有益补充,其编制思维和方法可用到更多高频宏观经济指标的构建上。 Research Objectives: The paper aims to explore the design and application of real-time high-frequency price indicators with online big data in the era of digital economyResearch Methods: We design the first set of Internet-based Consumer Price Indices (iCPI) in China, and analyze the index quality and its applications from multiple aspectsResearch Findings: Firstly, iCPI can realize real-time updating of daily, weekly, and monthly indices of various levels of products and service (see official website www.bdecon.com)Secondly, iCPI is automatically generated in the computation procedure from the data collection, cleaning, processing and final online publishing, which effectively saves time and avoids human interventionThirdly, high-frequency iCPI performs well in representing general price changes, accurately capturing the effects of special events, nowcasting the inflation and real-time monitoring the macroeconomic situationResearch Innovations: We firstly employ online big data to design CPI in China, which makes up for the research gap of real-time high-frequency price indicatorsResearch Value: Online iCPI is the beneficial complement of official CPI, and the proposed realization roadmap can be applied to construct different high-frequency macroeconomic indicators in the future.
作者 刘涛雄 汤珂 姜婷凤 仉力 Liu Taoxiong;Tang Ke;Jiang Tingfeng;Zhang Li(Institute of Economics, School of Social Sciences, Tsinghua University;Institute for Innovation and Development, Tsinghua University;School of Banking & Finance,University of International Business and Economics;Institute of World Economics and Politics, Chinese Academy of Social Sciences)
出处 《数量经济技术经济研究》 CSSCI CSCD 北大核心 2019年第9期81-101,共21页 Journal of Quantitative & Technological Economics
基金 国家社科基金重大项目(16ZDA008) 国家杰出青年科学基金项目(71325007) 清华大学数据科学研究院的资助
关键词 在线大数据 iCPI 实时高频指标 宏观现时预测 Online Big Data iCPI Real-time High-Frequency Indicators Macroeconomic Nowcasting
  • 相关文献

参考文献3

二级参考文献34

  • 1赵红.GDP核算中的价格指数及存在问题研究[J].统计研究,2005,22(5):63-69. 被引量:16
  • 2杨灿,孙秋碧.国民核算中的指数序列问题研究[J].统计研究,2006,23(6):73-79. 被引量:7
  • 3任栋,周丽晖.购房支出应部分计入消费物价指数[J].时代经贸(下旬),2006(11Z):3-3. 被引量:2
  • 4徐强.CPI编制中的几个基本问题探析[J].统计研究,2007,24(8):30-35. 被引量:22
  • 5ILO, IMF, OECD, UNECE, Eurostat, and the World Bank Consumer Price Index Manual: Theory and Practice[ M ]. Geneva International Labour Office, 2004.
  • 6ILO. Resolution Concerning Consumer Price Indices [ EB/OL] Geneva: International Labour Office, 2003.
  • 7UNECE, ILO, IMF, OECD, Eurostat, the World Bank, and Office for National Statistics (UK). Practical Guide to Producing Consumer Price Indices [ M ]. Washington D. C. : United Nations, 2009.
  • 8OECD. Main Economic Indicators Comparative Methodological Analysis: Consumer and Producer Price Indices [ EB/OL ]. Source OECD Statistics Sources & Methods, 2002, Supplement 2.
  • 9Eurostat. European Price Statistics: An Overview [ EB/OL ]. Luxembourg: Office for Official Publications of the European Communities, 2008.
  • 10Greenlees, John, and Mc C|elland, Robert. Recent Controversies over CPI Methodology[J]. Business Economics, 2010(45): 28-37.

共引文献22

同被引文献281

引证文献25

二级引证文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部