期刊文献+

Effects of biochar and litter on carbon and nitrogen mineralization and soil microbial community structure in a China fir plantation 被引量:3

Effects of biochar and litter on carbon and nitrogen mineralization and soil microbial community structure in a China fir plantation
下载PDF
导出
摘要 To investigate the effects of biochar addition(1 or 3%)to the soil of a China fir plantation with or without litter,we conducted a 90-day incubation experiment.We also studied the C and N dynamics and the microbial community structure of the soil.In soil without litter,the application of biochar at a rate of 3%significantly decreased CO2 emissions,while addition of 1%biochar had no effect.Biochar application did not affect the net N mineralization rate but significantly reduced the NH4?concentration after 90 days.In litter-enriched soil,biochar application had no significant effect on total CO2 emissions;however,application of 3%biochar significantly reduced the net N mineralization rate.Biochar application to soil with or without litter immediately reduced the dissolved organic carbon(DOC)concentration independent of the application rate,which was primarily due to sorption of DOC by the biochar.Phospholipid fatty acid analysis demonstrated that both concentrations of added biochar to soil(with or without litter)altered the soil microbial community structure at the end of incubation,although the effect of biochar was not as strong as the effect of time or litter application.The effect of biochar addition alone on microbial community structure was inconsistent over time.Litter added to soil significantly increased fungi and reduced Gram-positive bacteria.In the presence of litter,biochar applied at both 1%and 3%significantly increased(p<0.05)the proportion of actinomycete only at day 90.Our results indicate biochar as a potentially effective measure for C sequestration in the test soil of a China fir plantation,even in the presence of litter. To investigate the effects of biochar addition(1 or 3%)to the soil of a China fir plantation with or without litter,we conducted a 90-day incubation experiment.We also studied the C and N dynamics and the microbial community structure of the soil.In soil without litter,the application of biochar at a rate of 3% significantly decreased CO2 emissions,while addition of 1% biochar had no effect.Biochar application did not affect the net N mineralization rate but significantly reduced the NH4+ concentration after 90 days.In litter-enriched soil,biochar application had no significant effect on total CO2 emissions;however,application of 3% biochar significantly reduced the net N mineralization rate.Biochar application to soil with or without litter immediately reduced the dissolved organic carbon(DOC)concentration independent of the application rate,which was primarily due to sorption of DOC by the biochar.Phospholipid fatty acid analysis demonstrated that both concentrations of added biochar to soil(with or without litter)altered the soil microbial community structure at the end of incubation,although the effect of biochar was not as strong as the effect of time or litter application.The effect of biochar addition alone on microbial community structure was inconsistent over time.Litter added to soil significantly increased fungi and reduced Gram-positive bacteria.In the presence of litter,biochar applied at both 1% and 3% significantly increased(p<0.05)the proportion of actinomycete only at day 90.Our results indicate biochar as a potentially effective measure for C sequestration in the test soil of a China fir plantation,even in the presence of litter.
出处 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第5期1913-1923,共11页 林业研究(英文版)
基金 supported by the National Science and Technology Support Program(2015BAD09B010102) International Science and Technology Cooperation Program of Fujian Agriculture and Forestry University(KXB16008A)
关键词 BIOCHAR LITTER China FIR CO2 production MINERALIZATION MICROBIAL community structure Biochar Litter China fir CO2 production Mineralization Microbial community structure
  • 相关文献

同被引文献37

引证文献3

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部