摘要
[目的/意义]智能反恐时代,反恐预测算法作为机器学习的应用算法,在预测恐怖活动组织和恐怖分子方面,效果显著。然而,应用中出现了“保密黑箱”叠加“技术黑箱”的“双黑箱”问题,对之研究具有重要的现实价值。[方法/过程]以美军反恐战争为研究样本,实证分析了造成“双黑箱”的原因,如数据偏差、算法歧视、过度依赖、透明不足和问责不力等;规范分析了美国政府破解“双黑箱”的政策和法律探索。[结果/结论]研究认为,确保可参与性、可诠释性和可问责性的透明化路径是解决反恐预测算法“双黑箱”的积极面向。
[Purpose/Significance]As anti-terrorism steps into the intelligent era, anti-terrorism prediction algorithm, as an application algorithm of machine learning, has a remarkable effect on predicting terrorist organizations and terrorists. However, the “confidentiality black box” and the “technology black box” problems, known as the“double black boxes” problems, which appear in intelligent anti-terrorism are the key of this research.[Method/Process]Taking the US military war on terror as a case, this research empirically analyzes the causes of “double black boxes”, such as data deviation, algorithm discrimination, over-reliance, insufficient transparency and ineffective supervision and accountability and normatively analyzes the policy and legal exploration of the US government.[Result/Conclusion]In conclusion, ways to solve the “double black boxes” problems of anti-terrorism prediction algorithm involve ensuring the transparency of interpretability, accountability and participation.
作者
党俊琦
Dang Junqi(Northwest University of Political Science and Law, Xi'an 710082;Xi'an Public Security Bureau, Xi'an 710002)
出处
《情报杂志》
CSSCI
北大核心
2019年第9期69-77,共9页
Journal of Intelligence
关键词
反恐预测算法
机器学习国际法
反恐战争
“双黑箱”
counter terrorism prediction algorithm
machine learning
international law
counter terrorism war
double black boxes