摘要
该文基于Simon的有限理性理论,首先构造了有限理性下变分不等式问题的逼近定理,为有关变分不等式问题的不同算法提供了一个理论支持,充分体现了有限理性是对完全理性的逼近,是以完全理性为终极目标的.然后,利用集值分析的方法,将有限理性的逼近定理应用于变分不等式问题解的收敛性分析,在Baire分类的意义下,分别得到了函数扰动及函数和约束集同时扰动两种情况下单调变分不等式问题的解具有通有收敛性的结果.
In this paper, basing on Simon's bounded rati|onality theory, we first prove and con-struct an approximation theorem for variational inequalities problems, which provide theoretical support for many relevant different algorithms. Simon's bounded rationality is illustrated and bounded rationality is approaching to full rationality as its ultimate goal. Then, by the methods of set-valued analysis, bounded rationality approximation theory is used for the convergence analysis of solutions of variational inequalities problems. In the sense of Baire category, we obtain the generic convergence of the solutions of monotone variational inequalities problems, in both cases that the function disturbance and the function and constraint set disturbance.
作者
丘小玲
贾文生
Qiu Xiaoling;Jia Wensheng(School of Mathematics and Statistics, Guizhou University,Guiyang 550025)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2019年第4期730-737,共8页
Acta Mathematica Scientia
基金
国家自然科学基金(11561013)
人社部留学归国人员择优资助项目(2015192)
贵州省科技厅联合基金(QKH[2014]7643,[2016]7425)
贵州大学引进人才基金(201405,201811)~~
关键词
有限理性
单调变分不等式
逼近定理
集值映射
通有收敛
Bounded rationality
Monotone variational inequalities
Approximation theorem
Set-valued mapping: Generic convergence