摘要
该文考虑一个具有部分免疫和环境传播的麻疹传染病模型,得到基本再生数R0,并通过构造Lyapunov函数,研究了该模型的无病平衡点和地方病平衡点的全局稳定性.当R0<1时,无病平衡点是全局渐近稳定的,即麻疹不会传播开;当R0>1时,模型存在唯一的地方病平衡点,且是全局渐近稳定的,即麻疹的传播保持在一个稳定的状态.最后,通过数值分析说明了这些结果的合理性.该文工作对于预防和控制麻疹病毒的传播具有实际意义.
In this paper,a measles epidemic model with partial immunity and environmental transmission is considered,and the basic reproduction number R0 is obtained.By constructing Lyapunov functions,we prove the global asymptotic stability of the infection-free equilibrium and the endemic equilibrium.When R0<1,the infection-free equilibrium is globally asymptotically stable,which implies that measles dies out eventually;when R0>1,the model has a unique endemic equilibrium,which is globally asymptotically stable,that is the transmission of measles keeps a steady state.Finally,the simulations are carried to verify the rationality of the results.This work has practical significance for guiding us to prevent and control the measles spread.
作者
靖晓洁
赵爱民
刘桂荣
Jing Xiaojie;Zhao Aimin;Liu Guirong(School of Mathematical Sciences, Shanxi University, Taiyuan 030006)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2019年第4期909-917,共9页
Acta Mathematica Scientia
基金
国家自然科学基金(11471197)
山西省自然科学基金(201601D202002)~~
关键词
部分免疫
环境传播
基本再生数
LYAPUNOV函数
全局稳定性
Partial immunity
Environmental transmission
The basic reproduction number
Lyapunov function
Global stability