期刊文献+

基于特征补偿的深度神经网络重建超分辨率图像

Super-resolution Image Reconstruction Based on Feature Compensation Depth Neural Network
下载PDF
导出
摘要 为有效恢复图像的高频信息,本文提出一种基于特征补偿的深度神经网络重建超分辨率图像方法.该方法结合密集型深度卷积神经网络和残差网络,并将原图像的高频信息单独提取上采样后与重建后的超分辨率图像融合形成高频特征补偿,使得图像质量提升.通过实验对比,本文算法相比于SRCNN算法重建出的超分辨率图像效果提升约1 db. In order to effectively restore the high-frequency information of images, a depth neural network image super-resolution reconstruction method based on feature compensation is proposed. This method combines the dense depth convolution neural network and residual network, extracts the high-frequency information of the original images separately and fuses it with the reconstructed super-resolution images to form high-frequency feature compensation, which improves the image quality. Compared with SRCNN, the super-resolution image reconstructed by SRCNN is improved by about 1 db.
作者 应自炉 龙祥 YING Zi-lu;LONG Xiang(Division of Intelligent Manufacturing, Wuyi University, Jiangmen 529000, China)
出处 《五邑大学学报(自然科学版)》 CAS 2019年第3期66-71,共6页 Journal of Wuyi University(Natural Science Edition)
基金 国家自然科学基金资助项目(61771347,61072127,61372193) 广东省自然科学基金资助项目(S2013010013311,10152902001000002,S2011010001085,S2011040004211)
关键词 高频信息 特征补偿 密集型卷积神经网络 残差网络 high frequency information feature compensation dense CNN residual network
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部