期刊文献+

基于深度可分离卷积神经网络的关键词识别系统 被引量:4

Keywords spotting system based on deepwise separable convolutional neural network
下载PDF
导出
摘要 关键词识别系统是智能语音交互系统的重要组成部分.本文使用Google语音命令数据集,探索使用传统卷积神经网络和深度可分离卷积神经网络在关键词识别任务中的应用,对两种卷积神经网络模型从识别率、计算量、内存消耗进行对比,并提出适用于受限设备的低资源、较高识别率的网络模型.实验结果显示无论传统卷积神经网络还是深度可分离卷积神经网络在关键词识别任务中的表现都优于传统的的隐马尔科夫模型和全连接深度学习模型,而深度可分离卷积神经网络进一步优于传统卷积神经网络. The keyword spotting system is an important part of the intelligent voice interaction system. We explore the application of convolution neural networks and depthwise separable convolution neural networks to the keyword spotting task, using the Google Speech Commands Dataset as our benchmark. We will make comparison of recognition rate, calculation amount, and storage consumption for two convolutional neural network models and propose a network model with low resource and high recognition rate for restricted devices. The experimental results show that both the traditional convolutional neural networks and the deep separable convolutional neural networks perform better than the traditional Hidden Markov model and deep learning model based on fully connected neural networks in the keyword spotting task, while the depthwise separable convolutional neural networks is more superior to the convolutional neural networks.
作者 王帅 彭意兵 何顶新 WANG Shuai;PENG Yi-bing;Newest He(College of Automation, Huazhong University of Science and Technology,Wuhan 430070, China)
出处 《微电子学与计算机》 北大核心 2019年第9期103-108,共6页 Microelectronics & Computer
基金 国家自然科学基金(616750416)
关键词 关键词识别 卷积神经网络 深度可分离卷积神经网络 受限设备 spotting convolution neural network depthwise separable convolution neural network restricted device
  • 相关文献

参考文献2

二级参考文献11

  • 1刘晓明,覃胜,刘宗行,江泽佳.语音端点检测的仿真研究[J].系统仿真学报,2005,17(8):1974-1976. 被引量:21
  • 2侯周国,钱盛友,姚畅.短时域语音端点检测中谱熵算法的改进[J].计算机工程与应用,2006,42(21):55-56. 被引量:3
  • 3Bush K, Ganapathiraju A, Komman P. A Comparison of Energy- based Endpoint Detectors for Speech Signal Processing [C]// MS State DSP Conference (S1520-6149). Fall, 1995: 85-98.
  • 4Jia C, Xu B. An Improved Entropy based Endpoint Detection Algorithm [C]// ISCSLP (ISBN: 0-7803-8678-7). Taipei, Taiwan 2002: 96.
  • 5Shen J L, Hung J W, Lee L S. Robust Entropy-based Endpoint Detection for Speech Recognition in Noisy Environments [C]// Processing. Sydney ICSLP (S0160-5840), Sydney, Australia, Nov-Dec 1998, CD2ROM, 1998: 232-235.
  • 6Bing-Fei Wu, Kun-Ching Wang. Robust Endpoint Detection Algorithm Based on the Adaptive Band-Partitioning Spectral Entropy in Adverse Environments [J]. IEEE Transactions on Speech and Audio Processing (S 1063-6676), 2005, 13(5): 762-775.
  • 7Gin-Der Wu, Chin-Teng Lin. Word Boundary Detection with Mel-Scale Frequency Bank in Noisy Environment [J]. Ieee Transactions on Speech and Audio Processing (S1063-6676), 2000,8(5): 541-554.
  • 8S F Boll. Suppression of acoustic noise in speech using spectral subtraction [J]. IEEE Transaction on Acoustics, Speech and Signal Proc (S0096-3518), 1979, 27:113-120.
  • 9Hemant Misra, Shajith Ikbal, Sunil Sivadas, Herve Bourlard. Multi-resolution spectral entropy feature for robust ASR. [C]// ICASSP'05 (S 1053-5888). Philadelphia, PA, 2005, (3): 253-256.
  • 10Liang-sheng Hua, Chung-ho Yang. A Novel Approach To Robust Speech Endpoint Detection In Car Environments [C]//ICASSP 2000 (S1520-6419). Istambul, Turkey, 2000: 1751-1754.

共引文献94

同被引文献45

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部