期刊文献+

不同碳含量GH3030合金冷拔的加工硬化及再结晶

Work Hardening and Recrystallization of Cold Drawn GH3030 Alloy with Different Carbon Content
原文传递
导出
摘要 通过真空感应炉熔炼制备了不同碳含量的GH3030合金铸锭,铸锭经锻造、热轧至Ф6.5mm合金棒,对其退火后开展了不同冷拔变形量的冷拔试验,并对不同冷拔变形量的丝材进行了600~900℃退火。采用光学显微镜(OM)和材料拉伸试验机等手段研究了不同碳含量GH3030合金冷拉拔的加工硬化及再结晶。研究结果表明,随碳含量的增加,合金的屈服强度和抗拉强度呈增加趋势,延伸率呈现降低趋势;合金的平均加工硬化速率呈现增加的趋势,最高可达9.1MPa·%^-1.当碳含量较低为0.016%时,冷拔变形量为80%的GH3030合金在700~800℃退火时可产生再结晶。碳含量增加至0.118%,变形量为80%时的再结晶温度略有降低,为600~700℃。 GH3030 alloy ingots with different carbon contents were prepared by vacuum induction furnace melting. The ingots were forged and hot rolled to 06.5mm alloy rods. After annealing,cold drawing tests were carried out with different cold drawing deformations. The cold drawn deformation of the wire was annealed at 600 to 900 ℃. The work hardening and recrystallization of cold drawing of GH3030 alloy with different carbon contents were studied by means of optical microscope ( OM ) and material tensile testing machine. The results show that with the increase of carbon content,the yield strength and tensile strength of the alloy increase,and the elongation decreases. The average work hardening rate of the alloy shows an increasing trend,up to 9.1 M Pa·%^-1. When the carbon content is lower at 0.016%,the GH3030 alloy with a cold drawing deformation of 80% can be recrystallized as it is annealed at 700 to 800℃. While the carbon content is increased to 0.118% and the deformation amount is 80%,the recrystallization temperature is slightly lowered to 600 to 700℃.
作者 柳海波 毛卫民 张志伟 安宁 LIU Haibo;MAO Weimin;ZHANG Zhiwei;AN Ning(Beijing Beiye Functional Materials Corporation,Beijing 100192,China;School of Materials Science and Engineering,University of Science and Technology Beijing,Beijing 100083,China)
出处 《金属材料研究》 2019年第2期42-45,共4页 Research on Metallic Materials
关键词 GH3030合金 冷拉拔 加工硬化 再结晶 GH3030 alloy cold drawn work hardening recrystallization
  • 相关文献

参考文献2

二级参考文献24

  • 1洪小玲,肖荣仁,李端来.GH3030合金锻坯裂纹分析[J].钢铁研究,2002,30(5):11-12. 被引量:2
  • 2张小彬,刘常升,吕俊英,杨洪才.镍基高温合金长期时效过程中第二相的析出[J].东北大学学报(自然科学版),2005,26(4):355-358. 被引量:18
  • 3Г·В·沙穆素诺夫,В·И·康士坦丁诺夫.钽与铌[M].卜宝林,刘恩鸿译.北京:中国工业出版社,1962.
  • 4Cardonne S M.Kumar P.Michaluk C A,et al.Tantalum and its alloys[J].International Journal of Refractory Metals and Hard Materials,1995,13(4):187-194.
  • 5Moser K D.The manufacture and fabrication of tantalum[J].JOM,1999.51(4):29-31.
  • 6Rowe C E D.The use of tantalum in the proces industry[J].JOM,1997.49(1):26-28.
  • 7Buckman R W Jr.New applications for tantalum and tantalum alloys[J].JOM.2000,52(3):40-41.
  • 8Kock W.Paschen P.Tantalum processing properties and application[J].J Metals,1989,12(1):33-40.
  • 9Clark J B.Garrett R K Jr.Jungling T L.et al.Influence of initial ingot breakdown on the microstructural and textural development of high-purity tantalum[J].Metall Trans A,1991.22A(12):2959-2968.
  • 10Zerilli F J.Armstrong R W.Description of tantalum deformation behavior by dislocation mechanics based constitutive relations[J].J Appl Phys,1990.68(4):1580-1591.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部