期刊文献+

回波干扰下车辆室内外精准定位方法仿真 被引量:1

Simulation of Indoor and Outdoor Precise Positioning of Vehicles under Echo Interference
下载PDF
导出
摘要 针对运用当前方法对车辆进行室内外定位时存在的定位时间过长、定位成本过高和定位精度低的问题,提出一种基于粒子群优化的车辆室内外精准定位方法。采用经验模态分解法对回波干扰产生的噪声信号进行模态分解,对分解后的噪声信号采用连续均方误差准则重构,构建车辆室内外信号智能定位模型,应用粒子群算法对定位模型进行求解,确定回波干扰下车辆室内外定位的最优解,完成车辆室内外精准定位。实验结果表明,所提方法缩短了定位时间,提高了定位精度,并降低了定位成本,说明所提方法在车辆室内外定位方面具有有效性,可以有效解决实际问题。 Due to long positioning time, high positioning cost and low positioning accuracy of current method for indoor and outdoor positioning of vehicles, this article put forward a method of precise indoor and outdoor positioning based on particle swarm optimization. Firstly, the empirical mode decomposition method was applied to the modal decomposition of the noise signal generated by echo interference. Secondly, the noise signal after decomposition was reconstructed by continuous mean square error criterion. Thirdly, the intelligent positioning model of indoor signal and outdoor signal of vehicle was constructed, and the particle swarm optimization algorithm is applied to the positioning model. After that, particle swarm optimization was used to solve location model, so as to determine the optimal solution for the indoor and outdoor positioning of vehicle under echo interference. Finally, the accurate indoor and outdoor positioning of vehicle was completed. Simulation results show that the proposed method shortens the positioning time and improves the positioning accuracy. Meanwhile, this method reduces the positioning cost. Thus, the proposed method is effective in the indoor and outdoor positioning of vehicle, which can effectively solve practical problem.
作者 闫伟 YAN Wei(Institute of Information Engineering, Suqian College, Suqian Jiangsu 223800, China)
出处 《计算机仿真》 北大核心 2019年第8期157-160,共4页 Computer Simulation
基金 2017年江苏省重点研发计划(社会发展(S201712)
关键词 回波干扰 车辆室内外 精准定位 粒子群优化 Echo interference Indoor and outdoor Precise positioning Particle swarm optimization
  • 相关文献

参考文献10

二级参考文献67

  • 1刘懿,廖家平.一种全局视觉下的机器人定位系统[J].湖北工业大学学报,2009,24(1):50-52. 被引量:1
  • 2谢云,杨宜民.基于单目视觉的自主足球机器人自定位研究[J].电路与系统学报,2006,11(1):29-34. 被引量:5
  • 3张翔,费树岷,苏慧,郑世友.织物组织结构自动识别系统拼接算法研究[J].控制工程,2006,13(4):327-330. 被引量:4
  • 4CHEN L N, LIB H, ZHAO K, et al. An improved algorithm to generate a WiFi fingerprint database for indoor positioning [ J ]. Sensors, 2013, 13 ( 8 ) : 11085 - 11096.
  • 5REHIMM. Horus: a WLAN-based indoor location determination system [ M]. Maryland: University of Maryland at College Park, 2004.
  • 6FANG S H,LIN T N. Indoor location system based on discriminant-adaptive neural network in IEEE 802.11 environments [J]. IEEE Transactions on Neural Networks,2008,19(11) : 1973 - 1978.
  • 7WU Z L, LI C H, NG J K Y, et al. Location estimation via support vector regression [J]. IEEE Transactions on Mobile Computing, 2007,6 (3) : 311 - 321.
  • 8KUSHKI A, PLATANIOTIS K N, VENETSANOPOULOS A N. Kernel-based positioning in wireless local area networks[J]. IEEE Transactions on Mobile Computing, 2007,6(6) :689 - 705.
  • 9FANG S H, LINT. Principal component localization in indoor WLAN environments[J]. IEEE Transactions onMobile Computing,2012,11(1) :100- 110.
  • 10OUTEMZABET S, NERGUIZIAN C. Accuracy enhance- ment of an indoor ANN-based fingerprinting location system using Kalman filtering[C]//Proceedings of the IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications. Cannes: IEEE, 2008:1 - 5.

共引文献79

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部