期刊文献+

基于Unity/Vuforia的AR导览系统研究 被引量:20

Research Of Automatic Navigation AR System Based On Unity/Vuforia
下载PDF
导出
摘要 针对现有移动终端增强现实导览系统中自然特征识别数据量大、计算耗时长、标志物识别准确率较低、受光照、遮挡影响大、易于导致跟踪失败等问题,提出一种基于Unity/Vuforia增强现实的自动导览方法。采用3DsMax对场景进行三维建模,利用Unity进行场景交互设计,用Vuforia引擎检测和跟踪标识物特征点,并根据标识物的位置,显示对应的增强现实场景、播放视频、动画、音效。借助这一方法,开发了北海公园自动导览原型系统。实验表明,上述方法识别自然特征数据块、识别准确率高、降低了光照、遮挡影响、克服了跟踪失败问题,能够快速实现场景、视频等增强现实技术的叠加效果。 In view of the problem that existing mobile terminals of augmented reality ( AR), such as large amount of natural feature recognition data, long time consuming, low recognition accuracy rate, large influence of illumination and occlusion, are easy to lead to failure of tracking and so on, a automatic navigation method was proposed based on Unity/Vuforia augmented reality. The 3D models of scene were constructed by using 3 DM AX, and the problem of scene interaction was solved by Unity engine, and the features points of markers were detected and tracked by Vuforia engine. Next, according to the positions of markers, the corresponding augmented reality scene, video, animation and sound effects were shown was plays. With this method, we have developed the automatic navigation prototype system of Beihai park. Experiments show that this method identifies the natural feature data quickly, the recognition accuracy is High, the illumination and the occlusion influence are reduced, the robustness is improved, the tracking failure is overcome, and the superposition effect of the scene, video and other augmented reality technology can be realized quickly.
作者 郭晓敏 申闫春 GUO Xiao-Min;SHEN Yan-chun(College of Computer, Beijing Information Science & Technology University, Beijing 100192, China)
出处 《计算机仿真》 北大核心 2019年第8期165-169,共5页 Computer Simulation
基金 国家自然科学基金资助项目(21476020)
关键词 移动终端 增强现实 自动导览 Mobile terminal Augmented reality Automatic navigation
  • 相关文献

参考文献1

二级参考文献23

  • 1陈靖,王涌天,郭俊伟,刘伟,林精敦,薛康,刘越,丁刚毅.基于特征识别的增强现实跟踪定位算法[J].中国科学:信息科学,2010,40(11):1437-1449. 被引量:10
  • 2Vlahakis V,Ioannidis M,KarigiannisJ. Archeoguide:An augmented reality guide for archaeological sites[J].Computer Graphics and Applications,2002,(5):52-60.
  • 3Berg A,Zhang H,Maire M. SVM-KNN:Discriminative nearest neighbor classification for visual category recognition[A].Piscataway,NJ:IEEE,2006.2126-2136.
  • 4Calonder M,Ozuysal M,Lepetit V. Fast keypoint recognition using random ferns[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,(3):448-461.
  • 5Nister D,Stewenius H. Scalable recognition with a vocabulary tree[A].Piscataway,NJ:IEEE,2006.2161-2168.
  • 6He Junfeng,Feng Jinyuan,Liu Xianglong. Mobile product search with bag of hash bits[A].New York:ACM,2011.839-840.
  • 7Bay H,Ess A,Tuytelaars T. SURF:Speeded up robust features[J].{H}COMPUTER VISION AND IMAGE UNDERSTANDING,2008,(3):346-359.
  • 8Trzcinski T,Lepetit V,Fua P. Thick boundaries in binary space and their influence on nearest-neighbor search[J].{H}Pattern Recognition Letters,2012,(16):2173-2180.
  • 9Klein G,Murray D. Parallel tracking and mapping for small AR workspaces[A].Piscataway,N J:IEEE,2007.225-234.
  • 10Davison J,Reid D,Molton D. MonoSLAM:Real-time single camera SLAM[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,(6):1052-1067.

共引文献21

同被引文献112

引证文献20

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部