期刊文献+

基于空间约束ICP的改进视觉里程计

An Improved Visual Odometry Based on AICP
下载PDF
导出
摘要 针对传统的迭代最近点(Iterative Closest Point,ICP)算法在视觉里程计应用中存在的外点干扰与相机偶然大运动导致的位姿估计不准确或失效问题,提出基于空间约束ICP算法的相机位姿估计方法与帧对模型与帧间估计的切换策略,提高位姿估计准确度和鲁棒性。方法利用彩色深度相机的数学模型和空间约束为每帧图像提取的三维点云中的点赋予不同权值,并在ICP算法起始阶段估计当前帧点云与模型点云重叠率,减少外点对位姿估计的影响。为应对相机的偶然大运动,提出帧间位姿计算与帧对模型位姿计算的切换策略。实验在标准测试数据集下,与典型视觉里程计对比有效提高小规模运动下位姿估计的准确度,同时解决了相机偶然大运动下系统失效问题。 To avoid using prior information and motion assumptions of object and to address the error drift, a sliding window filter based object pose estimation algorithm is proposed. The algorithm requires no prior information and motion assumptions and avoids the error drift. To estimate the pose of an arbitrary object, Gauss-Newton method is used within each window to optimize the pose and structure iteratively. To tackle the error drift, Kalman filter and the strong coupling of pose and structure are explored by filtering the structure of object. Structure filtering increases the accuracy of structure estimation and thus the accuracy of estimated pose is increased without error drift. Simulation shows that the proposed algorithm can eliminate the error drift effectively and enhance the accuracy of existing method. Without prior information and assumption, the proposed algorithm can achieve the close estimation results of state-of-art methods.
作者 章弘 胡士强 HONG Zhang;HU Shi-qiang(School of Aeronautics and Astronautics,Shanghai Jiaotong University,Shanghai 200240,China)
出处 《计算机仿真》 北大核心 2019年第8期222-226,共5页 Computer Simulation
关键词 位姿估计 视觉里程计 迭代最近点 卡尔曼滤波器 Pose estimation Visual odometry Iterative closest point (ICP ) Kalman filter
  • 相关文献

参考文献3

二级参考文献72

  • 1吴功伟,周文晖,顾伟康.基于视差空间的双目视觉里程计[J].传感技术学报,2007,20(6):1432-1436. 被引量:10
  • 2SCARAMUZZA D, FRAUNDORFER F. Visual odometry ( part I : the first 30 years and fundamentals) [ J]. IEEE Robotics & Automation Magazine,2011,18(4) :80-92.
  • 3CHENG Yang, MAIMONE M W, MATTHIES L. Visual odometry on the mars exploration rovers: a tool to ensure accurate driving and science imaging [ J]. IEEE Robotics & Automation Magazine, 2006,13(2) :54-62.
  • 4MAIMONE M, CHENG Yang, MATTHIES L. Two years of visual odometry on the mars exploration myers:field reports [ J ]. Journal ofField Robotics ,2007,24 ( 3 ) : 169-186.
  • 5KELLY J, SUKHATME G S. An experimental study of aerial stereo visual odometry[ C]//Proc of the 6th IFAC Symposium on Intelligent Autonomous Vehicles. 2007.
  • 6CORKE P, DETWEILER C, DUNBABIN M, et al. Experiments with underwater robot localization and tracking [ C ]//Proc of International Conference on Robotics and Automation. 2007:4556-4561.
  • 7Da COSTA B S S,DREWS P,OLIVEIRA G L,et al. Visual odometry and mapping for underwater autonomous vehicles [ C]//Proe of the 6th Latin American Robotics Symposium. 2009:1-6.
  • 8DORNHEGE C, KLEINER A. Visual odometry for tracked vehicles [ C]//Proc of IEEE International Workshop on Safety, Security and Rescue Robotics. 2006.
  • 9AGRAWAL M, KONOLIGE K. Rough terrain visual odometry [ C ]// Proc of International Conference on Advanced Robotics. 2007.
  • 10KONOLIGE K, AGRAWAL M, SOLar J. Large-scale visual odometry for rough terrain[ C]//Proc of the 13th International Symposium on Robotics Research. 2011 : 201- 212.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部