期刊文献+

一种改进的带有演化规则的元胞遗传算法 被引量:3

An Improved Cellular Genetic Algorithm with Evolutionary Rules
下载PDF
导出
摘要 传统的遗传算法(GA)在求解云计算环境下的资源调度问题时存在早熟收敛、易陷入局部最优和鲁棒性差等问题,在GA算法的基础上融入了元胞自动机的作用机理,通过制定相应的演化规则,提出了一种改进的具有演化规则的元胞遗传算法(CGAER)。CGAER算法在种群进化过程中能够根据所制定的演化规则,不断地更新每个个体及其周围邻居的状态,确保整个种群在搜索空间的均匀性和多样性,这样可以有效避免算法过早收敛、易陷入局部最优和寻优能力弱等问题。通过一系列的仿真并与传统的遗传算法(GA)和元胞遗传算法(CGA)相比较,CGAER算法展现了良好的寻优性能和鲁棒性。在解决云资源调度问题时具备全局解空间搜寻能力,是一种更为有效的算法。 When dealing with resource scheduling under cloud computing environment, the traditional Genetic Algorithm (GA ) has some disadvantages such as early convergence, poor efficiency and being easy to fall into local optimum. In order to overcome these shortcomings of the traditional GA, this paper proposed an improved cellular genetic algorithm with evolutionary rules ( CGAER). According to the evolutional rules established, the status of each individual and its neighbors can be updated periodically, which can ensure uniformity and diversity of the entire population in the search space and avoid problems such as premature convergence of the algorithm, being easy to fall into local optimum and poor search ability. Therefore, the CGAER algorithm has a strong capability to find out the global optimum value for cloud resources scheduling problem. The experimental simulation shows that it has a good performance over the GA and CGA algorithm, which verifies that the CGAER algorithm is more effective and suitable to deal with resource scheduling under cloud computing environment.
作者 魏士伟 胡庆辉 WEI Shi-wei;HU Qing-hui(Department of Computer Science and Engineering,Guilin University of Aerospace Technology Guangxi 541004,China;School of Computer Science and Technology,Xidian University,Xi'an Shanxi 710071,China)
出处 《计算机仿真》 北大核心 2019年第8期247-252,共6页 Computer Simulation
基金 广西自然科学基金(.2016GXNSFAA380226) 广西高校中青年教师基础能力提升基金(.2017KY0866) 桂林航天工业学院物联网与大数据应用研究基金(KJPT201809)
关键词 云计算 资源调度 遗传算法 元胞自动机 演化规则 Cloud computing Resource scheduling Genetic algorithm Cellular automata Evolutionary Rule
  • 相关文献

参考文献3

二级参考文献25

  • 1罗小平,韦巍.生物免疫遗传算法的几乎处处强收敛性分析及收敛速度估计[J].电子学报,2005,33(10):1803-1807. 被引量:11
  • 2朱刚,马良.函数优化的元胞蚂蚁算法[J].系统工程学报,2007,22(3):305-308. 被引量:18
  • 3戴朝华,朱云芳,陈维荣,林建辉.云遗传算法及其应用[J].电子学报,2007,35(7):1419-1424. 被引量:84
  • 4Bernabe Dorronsoro,Enrique Alba.A simple cellular genetic algorithm for continuous optimization[A].IEEE Congress on Evolutionary Computation[C].Vancouver,BC,Canada,July 2006.2838-2844.
  • 5E Alba,B Dorronsoro,M Giacobini,et al.Decentralized cellular evolutionary algorithms[A].Handbook of Bioinspired Algorithms and Applications[C].CRC Press,2005.565-591.
  • 6G Rudolph,J Sprave.A cellular genetic algorithm with self-adjusting acceptance threshold[A].Genetic Algorithms in Engineering Systems:Innovations and Applications on IEE[C].Sheffield,UK,September 1995.365-372.
  • 7E Alba,B Dorronsoro.The exploration/exploitation tradeoff in dynarnic cellular genetic algorithms[J].IEEE Trans.on Evolutionary Computation,2005,9(2):126-142.
  • 8E Alba and J Troya.Cellular evolutionary algorithms:evaluating the influence of ratio[A].Proceedings of the 6th International Conference on Parallel Problem Solving from Nature[C].Berlin,Germany,2000.29-38.
  • 9Michael Kirley.A cellular genetic algorithm with disturbance:optimization using dynamic spatial interactions[J].Journal of Heuristics,2002,8(3):321-342.
  • 10Michael Kirley,Xiaodong Li,David G Green.Investigation of a Cellular Genetic Algorithm That Mimics Landscape Ecology[A].The Second Asia-Pacific Conference on Simulated Evolution and Learning on Simulated Evolution and Learning[C].Canberra,Australia,1999.90-97.

共引文献69

同被引文献26

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部