摘要
自动化码头建设是实现港口转型升级、提高核心竞争力和提升港口形象的重要途径。以最小化港口装卸作业时间为目标,建立了自动化码头堆场主要作业设备自动化集卡和自动化场桥的联合调度优化模型,考虑的不确定因素包括自动化集卡的行驶速度及时间和自动化场桥行走距离和作业时间的不确定性。采用改进的粒子群算法进行优化求解,算例结果表明不确定环境下的联合调度优化方案提升了港口的作业效率,验证了所用优化模型及算法的合理性和有效性。
The construction of automatic container is an important way to realize container transformation and upgrade , improve core competitiveness and enhance container image. The joint scheduling optimization model of AGV-AYC , which is used to minimize the loading and unloading time at automatic container yard is established. The uncertainties considered include the speed and time of AGV and the walking distance and operating time of AYC . The improved particle swarm algorithm is used to optimize the solution. The example results show that the joint scheduling optimization scheme under uncertain environment improves the efficiency of the automatic container operation and the rationality and validity of the optimization model and algorithm are verified.
作者
卢毅勤
LU Yi-qin(School of Economics& Management, Shanghai University of Electric Power, Shanghai 200090, China)
出处
《计算机仿真》
北大核心
2019年第8期325-328,共4页
Computer Simulation
基金
教育部人文社会科学研究青年基金项目(18YJCZH116)
上海电力学院校重点核心课程建设项目(生产与运营管理,20183118)
关键词
不确定规划
自动化码头
设备调度
自动导引车路径优化
Uncertain optimization
Automatic container
Equipment scheduling
AGV Path Optimization