期刊文献+

超分辨率图像模糊区域边界优化修复仿真 被引量:4

Super-resolution image blur region boundary optimization repair simulation
下载PDF
导出
摘要 针对现有的超分辨率图像模糊区域边界优化修复方法存在的峰值信噪比较低、平均绝对误差值较大等问题,提出了一种基于贝叶斯的超分辨率图像模糊区域边界优化修复方法,首先对待修复超分辨率图像模糊区域进行边界检测和小波降噪操作,然后对确定的边界破损位置进行小波特征提取,分析模糊区域边界破损点的向量量化数据。通过贝叶斯方法实现对超分辨率图像模糊区域边界优化修复。仿真实验结果表明,采用所提方法可以在高峰值信噪比、低平均绝对误差值的情况下完成对超分辨率图像模糊区域边界优化修复,且用时较短。 Aiming at the problems of low peak signal-to-noise ratio and large average absolute error in the existing super-resolution image blur region boundary optimization repair method, a Bayesian-based super-resolution image blur region boundary optimization is proposed. In this method, the boundary detection and wavelet denoising operations of the super-resolution image blurred region are firstly treated, then the wavelet feature extraction is performed on the determined boundary damage location, and the vector quantization data of the boundary damage point of the fuzzy region are analyzed. The Bayesian method is used to optimize the boundary of the super-resolution image blur region. The simulation results show that the proposed method can optimize the boundary of the super-resolution image blur region with high peak signal-to-noise ratio and low average absolute error, and the time is short.
作者 黄涛 王涛 HUANG Tao;WANG Tao(Department of Teaching Affairs,Hebei University of Science and Technology,Shijiazhuang Hebei 050018 China;Department of Asset Management,Hebei University of Science and Technology,Shijiazhuang Hebei 050018,China)
出处 《计算机仿真》 北大核心 2019年第8期384-387,共4页 Computer Simulation
关键词 超分辨率图像 模糊区域 边界优化修复 Super resolution image Fuzzy area Boundary optimization repair
  • 相关文献

参考文献10

二级参考文献59

  • 1焦斌亮,赵文蕾.小波及分形理论在互有位移图像序列重构中的应用[J].光学仪器,2005,27(6):23-28. 被引量:4
  • 2刘政清,杨华,张骏.基于模糊集理论的红外图像自适应增强方法[J].制导与引信,2006,27(3):45-47. 被引量:2
  • 3沈焕锋,李平湘,张良培.一种自适应正则MAP超分辨率重建方法[J].武汉大学学报(信息科学版),2006,31(11):949-952. 被引量:21
  • 4张红英,彭启琮.数字图像修复技术综述[J].中国图象图形学报,2007,12(1):1-10. 被引量:160
  • 5Guillemot C, Le Meur O. hnage inpainling: overview and recent advances [ J ]. IEEE Transactions on Signal Processing Maga- zine, 2014,31 ( 1 ) :127-144.
  • 6Bez'talmio M, Sapiro G, Caselles V, et al. Image inpainting [ C ]//Proceedings of the SIGGRAPH. New York : ACM Press, 2000 : 417:.24.
  • 7Perona P, Malik J. Scale-space and edge detection using aniso-tropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990,12(7) :629-639.
  • 8Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[ J]. Physica D, 1992,60: 259-268.
  • 9Chan T,Shen J. Local inpainting models and TV inpainting[ J]. Siam Journal on Applied Mathematics, 2001,62 ( 3 ) : 1019-1043.
  • 10Chan T, Shen J, Non texture inpainting by curvature-driven dif- fusion[ J]. Journal of Visual Communication and Image Represen- tation, 2001,12(4) :436-449.

共引文献42

同被引文献41

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部