期刊文献+

Multicellular Systems Biology: Quantifying Cellular Patterning and Function in Plant Organs Using Network Science 被引量:3

原文传递
导出
摘要 Organ function is at least partially shaped and constrained by the organization of their constituent cells. Extensive investigation has revealed mechanisms explaining how these patterns are generated, with less being known about their functional relevance. In this paper, a methodology to discretize and quantitatively analyze cellular patterning is described. By performing global organ-scale cellular interaction mapping, the organization of cells can be extracted and analyzed using network science. This provides a means to take the developmental analysis of cellular organization in complex organisms beyond qualitative descriptions and provides data-driven approaches to inferring cellular function. The bridging of a structure- function relationship in hypocotyl epidermal cell patterning through global topological analysis provides support for this approach. The analysis of cellular topologies from patterning mutants further enables the contribution of gene activity toward the organizational properties of tissues to be linked, bridging molecular and tissue scales. This systems-based approach to investigate multicellular complexity paves the way to uncovering the principles of complex organ design and achieving predictive genotypephenotype mapping.
机构地区 School of Biosciences
出处 《Molecular Plant》 SCIE CAS CSCD 2019年第6期731-742,共12页 分子植物(英文版)
分类号 Q [生物学]
  • 相关文献

同被引文献29

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部