摘要
In this study,we developed a powder extruder system that can extrude and deposit powder mixtures to overcome the reported limitations of conventional dualpore scaffold manufacturing methods.To evaluate the extrusion and deposition capability of the powder extruder system,3D tissue-engineering scaffolds with dual-pore characteristics were fabricated with a PCL/PEO/NaCl(polycaprolactone/polyethylene oxide/sodium chloride)powder mixture.In addition,to evaluate the fabricated scaffolds,their compressive modulus,morphology,and in-vitro cell activity were assessed.Consequently,it was confirmed that the proposed powder extruder system can fabricate dual-pore scaffolds with well-interconnected pores as well as arbitrary 3D shapes shown by the fabrication of a 3D femur-shape scaffold similar to the femur model.The results of the cell proliferation and Cell Counting Kit-8(CCK-8)assays,DNA content analysis and viability assays confirm that the dual-pore scaffold fabricated by the powder extruder system improves cell attachment,proliferation,and viability.