期刊文献+

48 V微混发动机电动智能冷却系统 被引量:1

Study on Electric Intelligent Cooling System of 48V Mild Hybrid Engine
下载PDF
导出
摘要 在电动附件上应用48 V技术,降低功耗和发动机油耗。比较电动水泵与传统机械水泵能量流的区别,测试电动水泵和机械水泵在不同转速下的功耗,分析新欧洲驾驶循环(new European driving cycle, NEDC)下机械水泵和电动水泵的功耗差异;测试电动风扇在NEDC循环下的功耗;测试评估提高冷却液温度、降低水泵和风扇转速对发动机油耗的影响。结果表明,电动智能冷却系统可以精准稳定地控制发动机冷却液温度,水泵电动化使NEDC循环的水泵功耗降低38%,水温由80℃提高到100℃,NEDC循环电动风扇的功耗降低60%,水泵和风扇功耗降低,水温提升引起的散热量减小,NEDC循环油耗降低3.34%。 Reducing power dissipation and engine fuel consumption can be realized by using 48 V technology on the electric accessories. The power flow difference between mechanical cooling pump and electric cooling pump was compared, and the power consumption of both mechanical cooling pump and electric cooling pump were measured. The power consumption difference of these two kinds of pumps was analyzed experimentally under new European driving cycle(NEDC). Then, the power consumption of electric cooling fan was measured and analyzed under the NEDC. The influence of coolant temperature rise and reduction of cooling pump and fan speed on fuel consumption was evaluated experimentally. Test results show that engine coolant temperature could be controlled accurately and stably by the electric intelligent cooling system. Under the NEDC, pump power consumption shows a 38% reduction using the electric pump, and fan power consumption is reduced by 60% when the coolant temperature rise from 80℃ to 100℃. Due to the reduction of pump and fan power consumption, heat dissipating capacity caused by coolant temperature rising decreases, and the NEDC fuel consumption is reduced by 3.34%.
作者 李丕茂 耿宗起 葛乃良 左兰 LI Pimao;GENG Nongqi;GE Nailiang;ZUO Lan(State Key Laboratory of Engine Reliability, Weifang 261061 , China;R&D Centre, Weichai Power Co. Ltd., Weifang 261061 , China)
出处 《内燃机与动力装置》 2019年第4期20-24,共5页 Internal Combustion Engine & Powerplant
基金 国家重点研发计划(2017YFB0103504)
关键词 48V 微混发动机 冷却系统 电动水泵 电子节温器 电动风扇 48 volt micro-hybrid engine cooling system electric pump electric thermostat electric fan
  • 相关文献

参考文献8

二级参考文献52

  • 1王书义,王宪成,段初华.发动机冷却水流动的试验研究[J].车用发动机,1994(3):34-36. 被引量:16
  • 2段宏昌.发动机的内部冷却技术[J].车用发动机,1996(4):12-17. 被引量:5
  • 3刘毅,周大森,张红光.车用内燃机冷却系统动态传热模型[J].内燃机工程,2007,28(3):49-51. 被引量:11
  • 4孙志军,赵黎明,吴志新,郭英男.我国发展混合动力汽车的技术经济分析[J].天津大学学报(社会科学版),2007,9(3):230-232. 被引量:4
  • 5内燃机能量流失机理分析和研究.内然机学报,1989,(1).
  • 6Chanfreau M,Gessier B. The need for an electrical water valve in a thermal manage-ment intelligent system (THEMIS^TM) [C]//SAE 2003-01-0274,2003.
  • 7Chalgren R, Allen D. Light duty diesel advanced thermal manage ment[C]//SAE 2005-01-2020,2005.
  • 8Wagner J R, Srinivasan V, Dawson D. Smart thermostat and coolant pump control for engine thermal management systems [C]//SAE 2003-01-0272,2003.
  • 9Setlur P,Wagner J R,Da vson D M,et al. An advanced engine thermal management system: nonlinear control and test[J]. IEEE/ASME Transactions on Mechatronics, 2005,10 (2) : 210-220.
  • 10Salah M H, Mitchell T H ,Wagner J R, et al. Nonlinear-control strategy for advanced vehicle thermal management systems[J]. IEEE Transactions on Vehicular Technology, 2008,57 ( 1 ) : 127-137.

共引文献135

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部