期刊文献+

基于马尔科夫决策过程的多传感器协同检测与跟踪调度方法 被引量:10

Scheduling Method Based on Markov Decision Process for Multi-sensor Cooperative Detection and Tracking
下载PDF
导出
摘要 针对多任务场景下的传感器调度问题,该文提出一种面向目标协同检测与跟踪的多传感器调度方法。首先,该方法基于部分可观马尔科夫决策过程(POMDP)构建传感器调度模型,并基于后验克拉美-罗下界(PCRLB)设计优化目标函数。其次,考虑传感器切换时间和目标数目的时变性,采用随机分布粒子计算新生目标的检测概率,给出了固定目标数目和时变目标数目情形下的传感器调度方法。最后,为满足在线调度的实时性需求,采用自适应多种群协同差分进化(AMCDE)算法求解传感器调度方案。仿真结果表明,该方法能够有效应对多任务场景,实现多传感器资源的合理调度。 In order to solve the problem of sensor scheduling in the multi-task scenario,a multi-sensor scheduling method for target cooperative detection and tracking is proposed.Firstly,the sensor scheduling model is built based on the Partially Observable Markov Decision Process(POMDP)and an objective function is designed based on Posterior Carmér-Rao Lower Bound(PCRLB).Then,considering sensor switching time and the change of target number,the randomly distributed particles are used to calculate the detection probability of new target,and the sensor scheduling methods are given for the situations with fixed target number and time-varying target number.At last,to meet the real-time requirement of online scheduling,an Adaptive Multi-swarm Cooperative Differential Evolution(AMCDE)algorithm is used to solve the sensor scheduling scheme.Simulation results show that the method can effectively deal with multi-task scenarios and realize reasonable scheduling of multi-sensor resources.
作者 徐公国 单甘霖 段修生 乔成林 王浩天 XU Gongguo;SHAN Ganlin;DUAN Xiusheng;QIAO Chenglin;WANG Haotian(Department of Electronic and Optical Engineering,Army Engineering University Shijiazhuang Campus,Shijiazhuang 050003,China;Department of Mechanical Engineering,Shijiazhuang Tiedao University,Shijiazhuang 050003,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2019年第9期2201-2208,共8页 Journal of Electronics & Information Technology
关键词 检测与跟踪 传感器调度 马尔科夫决策过程 差分进化 Detection and tracking Sensor scheduling Markov decision process Differential evolution
  • 相关文献

参考文献5

二级参考文献81

  • 1沈阳,陈永光,李修和,解凯.多基地雷达反隐身分布式检测融合算法研究[J].电子学报,2007,35(3):506-510. 被引量:15
  • 2卢盈齐,祝长英.雷达组网反隐身的一种优化布站方法[J].系统工程理论与实践,2007,27(6):166-169. 被引量:15
  • 3凌晓曙.雷达隐身和反隐身技术[J].舰船电子对抗,2007,30(3):40-42. 被引量:5
  • 4BHARDWAJ M, CHANDRAKASAN A P. Bounding the life-time of sensor networks via optimal role assignments[C] //Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies. New York: IEEE, 2002, 3:1587 - 1596.
  • 5KANG H, LI X L, MORAN P J. Power-aware markov chain based tracking approach for wireless sensor networks[C]//20071EEE Wireless Communications and Networking Conference. Piscataway, NJ: IEEE, 2007:4209 - 4214.
  • 6AKYILDIZ I F, SU W L, SANKARASUBRAMANIAM Y, et al. A survey on sensor networks[J]. IEEE Communications Magazine, 2002, 40(8): 102 - 114.
  • 7AKY1LDIZ I F, SU W L, SANKARASUBRAMANIAM Y, et al. Wireless sensor networks: a survey[J]. Computer Networks, 2002, 38(4): 393 - 422.
  • 8FENG Z, JAEWON S, REICH J. Information-driven dynamic sensor collaboration[J]. Signal Processing Magazine, 2002, 19(2): 61 - 72.
  • 9LIU J, FEN Z, PETROVIC D. Information-directed routing in ad hoc sensor networks[J]. IEEE Journal on Selected Areas in Communications, 2005, 23(4): 851 -861.
  • 10ZHAO F, SHIN J, REICH J. Information-driven dynamic sensor collaboration for tracking applications[J]. IEEE Signal Processing Magazine, 2002. 19(2): 61 - 72.

共引文献31

同被引文献158

引证文献10

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部