摘要
针对多任务场景下的传感器调度问题,该文提出一种面向目标协同检测与跟踪的多传感器调度方法。首先,该方法基于部分可观马尔科夫决策过程(POMDP)构建传感器调度模型,并基于后验克拉美-罗下界(PCRLB)设计优化目标函数。其次,考虑传感器切换时间和目标数目的时变性,采用随机分布粒子计算新生目标的检测概率,给出了固定目标数目和时变目标数目情形下的传感器调度方法。最后,为满足在线调度的实时性需求,采用自适应多种群协同差分进化(AMCDE)算法求解传感器调度方案。仿真结果表明,该方法能够有效应对多任务场景,实现多传感器资源的合理调度。
In order to solve the problem of sensor scheduling in the multi-task scenario,a multi-sensor scheduling method for target cooperative detection and tracking is proposed.Firstly,the sensor scheduling model is built based on the Partially Observable Markov Decision Process(POMDP)and an objective function is designed based on Posterior Carmér-Rao Lower Bound(PCRLB).Then,considering sensor switching time and the change of target number,the randomly distributed particles are used to calculate the detection probability of new target,and the sensor scheduling methods are given for the situations with fixed target number and time-varying target number.At last,to meet the real-time requirement of online scheduling,an Adaptive Multi-swarm Cooperative Differential Evolution(AMCDE)algorithm is used to solve the sensor scheduling scheme.Simulation results show that the method can effectively deal with multi-task scenarios and realize reasonable scheduling of multi-sensor resources.
作者
徐公国
单甘霖
段修生
乔成林
王浩天
XU Gongguo;SHAN Ganlin;DUAN Xiusheng;QIAO Chenglin;WANG Haotian(Department of Electronic and Optical Engineering,Army Engineering University Shijiazhuang Campus,Shijiazhuang 050003,China;Department of Mechanical Engineering,Shijiazhuang Tiedao University,Shijiazhuang 050003,China)
出处
《电子与信息学报》
EI
CSCD
北大核心
2019年第9期2201-2208,共8页
Journal of Electronics & Information Technology
关键词
检测与跟踪
传感器调度
马尔科夫决策过程
差分进化
Detection and tracking
Sensor scheduling
Markov decision process
Differential evolution