摘要
为解决数控机床传统维修方法存在的“欠维护”或“过维护”弊端,提出了一种基于系统性能退化预测的预防维修方法,利用统计过程控制技术分析产品质量数据,实现机床工作状态的预测。建立了关键零部件的Wiener退化模型来预测寿命分布,从而可结合剩余寿命和收益确定最优预防维修策略。以某汽车活塞生产线上的数控机床异常数据为例,验证了所提方法的有效性。
In order to solve the disadvantages of “under maintenance” or “over maintenance” in traditional maintenance methods of CNC machine tools, a preventive maintenance method was proposed based on the prediction of system performance degradation. The SPC technology was used to analyze the product quality data and realize the prediction of the working states for the machine tools. The Wiener degradation model of a key component was established to predict the life distribution, so that the optimal preventive maintenance strategy might be determined by residual life and revenues. Taking the abnormal data of CNC machine tools in an automobile piston production line as an example, the validity of proposed method was verified.
作者
代愽超
张英杰
李阳帆
陈波
DAI Bochao;ZHANG Yingjie;LI Yangfan;CHEN Bo(School of Mechanical Engineering,Xi’an Jiaotong University,Xi’an,710049)
出处
《中国机械工程》
EI
CAS
CSCD
北大核心
2019年第17期2122-2128,共7页
China Mechanical Engineering
基金
陕西省自然科学重大基础研究计划资助项目(2017ZDJC-21)
上海交通大学中国质量发展研究院开放研究课题资助项目(2016-05)
关键词
统计过程控制
Wiener退化模型
寿命预测
预防维修
statistical process control(SPC)
Wiener degradation model
life prediction
preventive maintenance