期刊文献+

基于训练样本评估的CSP滤波器增量更新方法

Incremental updating algorithm for CSP filter based on training sample evaluation
下载PDF
导出
摘要 由于脑电图(electroencephalo gram,EEG)能反映不同状态下大脑的思维活动,所以,基于EEG的运动想象识别已经成为一个新的研究热点。为了降低低质量样本对CSP(common spatial pattern)滤波器模型的组间传输性能的影响,提高正确率,提出了一种基于样本筛选的CSP滤波器增量更新方法。首先通过样本筛选的方法对EEG数据进行质量评估,然后剔除低识别率对应的单次训练数据,最后对优化后的样本所设计的CSP滤波器进行增量更新。实验室环境下,对EEG信号进行运动想象识别,其平均正确率达到80.92%,相比传统的CSP方法,五位受试者测试集的平均识别率分别提高了5.4%、5.6%、1.5%、8.6%和7.7%,实验结果验证了所提算法的有效性。 Electro encephalog ram(EEG) can reflect the thinking activity of the brain under different conditions,therefore,motor imagery recognition based on EEG has become a new research hot spot. To reduce the influence of low-quality samples on the session-to-session transfer performance of CSP filter models and improve the recognition accuracy ratio, this paper proposed an incremental updating algorithm for CSP filter based on training sample evaluation. It used sample selection method to evaluate the quality of EEG data. Then it removed a set of training data corresponding to low recognition rate. Finally, it updated the CSP filter incrementally which designed by the optimized sample.In label environment, the motor imagery recognition of EEG signals reaches average accuracy of 80.92%.Compared with the traditional CSP method, the average recognition rate of the five subjects’ testing sets increases by 5.4%, 5.6%, 1.5%,8.6%, and 7.7%,respectively.The experimental results verify the effectiveness of the proposed algorithm.
作者 韩震宇 刘锦 吴小培 Han Zhenyu;Liu Jin;Wu Xiaopei(College of Computer Science & Technology,Anhui University,Hefei 230039,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第8期2328-2331,2337,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61271352)
关键词 脑电图 共同空间模式 样本筛选 增量更新 electroencephalogram common spatial pattern samples selection incremental update
  • 相关文献

参考文献3

二级参考文献20

  • 1张爱华,赵予晗.脑电信号相同步分析在识别左右手想象运动中的作用[J].中国临床康复,2005,9(48):4-6. 被引量:14
  • 2Clemens Brunner,Muhammad Naeem,Robert Leeb,Bernhard Graimann,Gert Pfurtscheller.Spatial filtering and selection of optimized components in four class motor imagery EEG data using independent components analysis[J].Pattern Recognition Letters.2007(8)
  • 3CJ James,CW Hesse.Independent component analysis for biomedical signals[].Physiological Measurement.2005
  • 4Grandchamp Romain,Braboszcz Claire,Makeig Scott,Delorme Arnaud.Stability of ICA decomposition across within-subject EEG datasets[].Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference.2013
  • 5Kanoh Shin’ichiro,Miyamoto Ko-Ichiro,Yoshinobu Tatsuo.Generation of spatial filters by ICA for detecting motor-related oscillatory EEG[].Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference.2013
  • 6del R Milan, J.,Carmena, J.Invasive or Noninvasive: Understanding Brain-Machine Interface Technology [Conversations in BME][].Engineering in Medicine.2010
  • 7Kachenoura, Amar,Albera, Laurent,Senhadji, Lotfi,Comon, Pierre.ICA: A potential tool for BCI systems[].IEEE Signal Processing Magazine.2008
  • 8Wang Yijun,Wang Yu-Te,Jung Tzyy-Ping.Translation of EEG spatial filters from resting to motor imagery using independent component analysis[].PloS one.2012
  • 9Delorme Arnaud,Palmer Jason,Onton Julie,Oostenveld Robert,Makeig Scott.Independent EEG sources are dipolar[].PloS one.2012
  • 10Chih-I Hung,Po-Lei Lee,Yu-Te Wu,Li-Fen Chen,Tzu-Chen Yeh,Jen-Chuen Hsieh.Recognition of Motor Imagery Electroencephalography Using Independent Component Analysis and Machine Classifiers[].Annals of Biomedical Engineering.2005

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部