期刊文献+

基于方差最大化旋转变换的K近邻故障诊断策略 被引量:4

Varimax rotation based K-nearest neighbor fault diagnosis strategy
下载PDF
导出
摘要 为了提高FD-KNN针对潜隐变量在非线性和多模态过程中的故障检测能力,提出一种基于方差最大化旋转变换的K近邻故障检测与诊断策略。通过方差最大化方法建立旋转变换将原始数据变换到新的正交空间,在该正交空间中执行FD-KNN方法进行故障检测,并结合贡献图方法给出基于贡献图的故障诊断策略。通过一个非线性模拟实例,证明方法对潜隐变量故障诊断是有效的;同时,在典型非线性工业过程田纳西过程进行测试,与PCA、FD-KNN和PC-KNN方法进行对比,实验结果进一步证明了方法的有效性。 Aiming to improve the fault detection ability of FD-KNN in the nonlinear and multimodal process, this paper proposed a K-nearest neighbors fault detection method based on varimax rotation (Rot-KNN). Firstly, it implemented varimax rotation in observed data set to obtain an orthogonal space. Next, it implemented FD-KNN in the new orthogonal space to detect faults. At last, it proposed a fault diagnosis strategy based on contribution chart. A nonlinear simulation example and the Tennessee Eastman (TE) processes of a typical nonlinear industrial process prove that the method is effective for the latent variable fault diagnosis. The experimental results indicate that the proposed method outperforms the PCA, FD-KNN and PC-KNN.
作者 张成 郭青秀 李元 Zhang Cheng;Guo Qingxiu;Li Yuan(Research Center of Technical Process Fault Diagnosis & Safety,ShenyangUniversity of Chemical Technology,Shenyang 110142,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第8期2404-2409,共6页 Application Research of Computers
基金 国家自然科学基金重大项目(61490701) 国家自然科学基金资助项目(61573088,61673279) 辽宁省教育厅重点实验室项目(LZ2015059) 辽宁省教育厅一般项目(L2015432) 辽宁省自然科学基金资助项目(2015020164)
关键词 K近邻 方差最大化旋转 故障检测 故障诊断 过程控制 主元分析 K-nearest neighbor varimax rotation fault detection fault diagnosis process control principal component analysis
  • 相关文献

参考文献4

二级参考文献50

  • 1刘毅,王海清.Pensim仿真平台在青霉素发酵过程的应用研究[J].系统仿真学报,2006,18(12):3524-3527. 被引量:44
  • 2Rabiner L,Juang B.An Introduction to Hidden Markov Models[J].IEEE ASSP Magazine,1986,3(1):4-16.
  • 3Yoon Seongkyu,MacGregor John F. Fault Diagnosis with Multivariate Statistical Models Part Ⅰ:Using Steady State Fault Signatures[J].Journal of Process Control,2001,11(4):387-400.
  • 4周东华,李钢,李元.数据驱动的工业过程故障诊断技术[M].北京:科学出版社,2011:23-29.
  • 5QIN S J. Survey on data-driven industrial l)rocess monito- ring and diagnosis" [ J ]. Annual Reviews in Control, 2012, 36(2) : 220-234.
  • 6JOE QIN S. Statistical process monitoring: basics and beyond[ J]. Journal of Chemometrics, 2003, 17 ( 8-9 ) : 480 -502.
  • 7KIM D, LEE I B. Process monitoring based on probabi- listie PCA [ J]. Chemometries and intelligent laboratory systems, 2003, 67(2): 109-123.
  • 8TIPPING M E, BISHOP C M. Prnbabilistic principal component analysis [ J ]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 1999, 61 (3) : 611-622.
  • 9KOURTI T, LEE J, MACGREGOR J F. Experiences with industrial applications of projection methods for mult- ivariate statistical process control [ J ]. Computers & Chemical Engineering, 1996, 20(96) : $745-$750.
  • 10ALCALA C F, QIN S J. Reeonstruetion-based contribu- tion for process monitoring [ J ]. Automatiea, 2009, 45 (7) : 1593-1600.

共引文献58

同被引文献36

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部