期刊文献+

基于散度—形状引导和优化函数的显著性目标检测

Saliency detection based on scatter-shape guidance and optimization function
下载PDF
导出
摘要 为了准确地进行显著性目标检测,提出了一种基于散度—形状引导和优化函数的显著性检测有效框架。通过考虑颜色、空间位置和边缘信息,提出了一种有辨别力的相似性度量;再利用散度先验剔除图像边界中的前景噪声获得背景集,并结合相似性度量计算得到基于背景显著图。为了提高检测质量,形状完整性被提出,并通过统计在分层空间中区域被激活的次数期望生成相应的形状完整显著图。最后,利用一个优化函数对两个显著图融合后的结果进行优化从而获得最终的结果。在公开数据集ASD、DUT-OMRON和ECSSD上进行实验验证,结果证明所提方法能够准确有效地检测出位于图像任意位置的显著性物体。 In order to detect saliency object accurately,this paper proposed an efficient framework for saliency detection based on scatter-shape guidance and optimization function.First,it proposed a discriminative similar metric by taking color,spatial and edge information into consideration.Based on similar metric together with background set obtained by removing the foreground noise in the image boundaries with scatter-guided,it constructed a background-based saliency map.In order to improve the quality of detection,this paper introduced the shape completeness and generated the corresponding shape completeness sa- liency map by measuring the expectation of times of a region which was activated over the hierarchical space.Finally,it achieved the final saliency map by integrating the above both maps jointly into an optimization function.Quantitative experiments on four available datasets ASD,DUT-OMRON and ECSSD demonstrate that the proposed method outperforms other state-of-the-art approaches and detects the salient object which locates at random positions.
作者 梁丽香 夏晨星 王胜文 张汗灵 Liang Lixiang;Xia Chenxing;Wang Shengwen;Zhang Hanling(School of Big Data Engineering,Kaili University,Kaili Guizhou 556011,China;College of Computer Science & Engineering,Anhui University of Science & Technology,Huainan Anhui 232001,China;School of Mathematics & Information Engineering,Liupanshui Normal University,Liupanshui Guizhou 553004,China;College of Computer Science & Electronic Engineering,Hunan University,Changsha 410082,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第8期2539-2543,共5页 Application Research of Computers
基金 贵州省教育厅青年科技人才成长项目(黔教合KY字[2016]307)
关键词 显著性检测 散度-形状引导 优化函数 相似性度量 分层空间 salient detection scatter-shape guidance optimization function similar metric hierarchical space
  • 相关文献

参考文献3

二级参考文献28

  • 1骆俊,马尽文.高斯混合模型的遗传分基融合算法[J].信号处理,2005,21(z1):395-398. 被引量:2
  • 2Boykov Y,Jolly M P.Interactive organ segmentation usinggraph cuts[J].Medical Image Computing and Computer-Assisted Intervention-MICCAI,2000,10:276-286.
  • 3Ren X,Malik J.Learning a classification model for segmentation[C].Proceedings of the Ninth IEEE InternationalConference on Computer Vision,ICCV,2003,1:10-17.
  • 4Levinshtein A,Stere A,Kutulakos K N,et al.Fast superpixelsusing geometric flows[J].IEEE Trans on PatternAnalysis and Machine Intelligence,2009,31(12):2290-2297.
  • 5Moore A P,Prince S J,Warrell J“. lattice cut”-constructingsuperpixles using layer constraints[C].IEEE Conference onComputer Vision and Pattern Recognition,CVPR,2010:2117-2124.
  • 6Shi J,Malik J.Normalized cuts and image segmentation[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2000,22(8):888-905.
  • 7Veksler O,Boykov Y.Superpixels and supervoxels in anenergy optimization framework[M].Computer Vision-ECCV2010.Berlin/Heidelberg:Springer,2010:211-224.
  • 8Comaniciu D,Meer P.Mean shift:a robust approach towardfeature space analysis[J].IEEE Trans on Pattern Analysisand Machine Intelligence,TPAMI,2002,24(5):603-619.
  • 9Liu Mingyu,Tuzel O,Ramalingam S,et al.Entropy ratesuperpixel segmentation[C].IEEE Conference on ComputerVision and Pattern Recognition,CVPR,2011:2097-2104.
  • 10Ning Jifeng,Zhang Lei,Zhang David,et al.Interactiveimage segmentation by maximal similarity based regionmergin[J].Pattern Recognition,2010,43:445-456.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部