期刊文献+

无向图中连通支配集问题的精确算法 被引量:7

Exact algorithm for connected dominating set in undirected graphs
下载PDF
导出
摘要 图G=(V,E)的一个支配集D?V是一个顶点子集,使得图中每一个顶点要么在D中,要么至少与D中的一个顶点相连。连通支配集问题是找到一个顶点数最小的支配集S,并且S的导出子图G[S]是连通图。该问题是一个经典的NP难问题,可应用于连通设施选址、自适应网络等领域。针对无向图中连通支配集问题,仔细分析该问题的图结构性质,挖掘出若干有效的约简规则和分支规则,设计了一个分支搜索算法,并采用了测量治之方法分析算法的运行时间,最终得到了一个运行时间复杂度为O*(1. 93n)的精确算法。 A dominating set D V of a graph G=(V,E ) was a subset of vertices, such that every vertex of G was either in D , or adjacent to at least one vertex in D . The connected dominating set problem asks to find a dominating set S with minimum number of vertices and the induced subgraph G[S] of S was connected. The connected dominating set problem was a classical NP-hard problem, which could be applied to connected facility location, Ad-hoc networks and many other areas. For the connected dominating set problem in undirected graphs, this paper carefully analyzed the structural properties, explored a number of effective reduction rules as well as branching rules and provided a branch-and-search algorithm. A measure- and-conquer method is also introduced to analyze the running time bound. Finally, an exact algorithm with a running time complexity of O *(1.93 n) is obtained.
作者 周晓清 叶安胜 张志强 Zhou Xiaoqing;Ye Ansheng;Zhang Zhiqiang(School of Computer Science & Engineering,University of Electronic Science & Technology of China,Chengdu 611731,China;College of Information Science & Engineering,Chengdu University,Chengdu 610106,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第9期2569-2574,共6页 Application Research of Computers
基金 国家重点研发计划资助项目(2016YFB0800605) 国家自然科学基金资助项目(61370071) 四川省教育厅科研项目重点项目(15ZA0354)
关键词 NP难问题 精确算法 测量治之 连通支配集问题 NP-hard problem exact algorithms measure-and-conquer connecteddominating set problem
  • 相关文献

参考文献3

二级参考文献44

  • 1Haynes T W, Hedetniemi S T, Slater P J. Fundamentals of Domination in Graphs. New York= Marcel I)ekker Inc., 1998.
  • 2Held M, Karp R M. A dynamic programming approach to sequencing problems. Journal of SIAM, 1962, 10(1) 196- 210.
  • 3Tarjan R, Trojanowski A. Finding a maximum independent set. SIAM JournalonComputing, 1977, 6(3): 537-546.
  • 4Claude Berge. The Theory of Graphs and Its Applications. New York: Methuen & Co. : John Wiley & Sons, 1962.
  • 5Ore O. Theory of Graphs. Providence: American Mathematical Society, 1962.
  • 6Cockayne E J, Hedetniemi S T. Towards a theory of domination in graphs. Networks, 1977, 7(3) : 247-261.
  • 7Garey M R, Johnson D S. Computers and Intractability: A Guide to the Theory of NP-Completeness. New York: Freeman, 1979.
  • 8Chang G J, Nemhauser G L. The k domination and k- stability problems in sun-free chordal graphs. SIAM Journal on Algehraie and Discrete Methods, 1984, 5(3) : 332-345.
  • 9Miroslav Chlebik, Janka Chlebikova. Approximation hardness of dominating set problems//Albers S, Radzik T eds, ESA 2004. LNCS 3221. Berlin: Springer, 2004:192- 203.
  • 10Guha S, Khuller S. Approximation algorithms for connected dominating sets. Algorithmica, 1998, 20(4): 374-387.

共引文献30

同被引文献23

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部