期刊文献+

一种移动众包系统在线激励机制优化算法 被引量:5

Optimization algorithm of online incentive mechanism for mobile crowdsourcing system
下载PDF
导出
摘要 为提高移动众包系统的有效性和可靠性,设计了一套完整的在线激励机制优化算法,针对用户到达和参与任务的异步行为,提出一种改进的多阶段反向拍卖算法,通过在线学习自适应确定密度阈值,动态选择最优用户集,并在每次交易后对用户的信誉进行更新,以指导下次任务分配。仿真结果表明,该优化算法满足计算有效性、利益双方正收益性和真实性,能在一定预算和时间约束下获得更好的性能。 In order to improve the validity and reliability of mobile crowdsourcing system,a complete optimization algorithm of online incentive mechanism was designed. For the asynchronous behavior of users arriving and participating in tasks,an improved multi-stage reverse auction algorithm was proposed. Through online learning adaptively determine the density threshold,dynamically selected the optimal user set,and updated the user’s reputation after each transaction to guide the next task assignment. The simulation results show that the optimization algorithm can meet the computational efficiency and the profitability and authenticity of both parties,and can achieve better performance under certain budget and time constraints.
作者 张永棠 Zhang Yongtang(Dept. of Computer Science & Technology,Guangdong Neusoft Institute,FoshanGuangdong 528225,China;Guangdong Key Laboratory of Big Data Analysis &Processing,Guangzhou 510006,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第9期2588-2589,2595,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(61363047) 广东省大数据分析与处理重点实验室开放基金资助项目(2017007) 佛山市科技创新项目(2016AG100792)
关键词 移动众包 数据感知 优化算法 智能优化 mobile crowdsourcing data awareness optimization algorithm intelligent optimization
  • 相关文献

参考文献5

二级参考文献40

  • 1于炯,曹元大,张常有.增强安全隐匿网格系统的研究(英文)[J].新疆大学学报(自然科学版),2007,24(3):274-281. 被引量:1
  • 2汪小帆,李翔,陈关荣.网络科学导论[M].北京:高等教育出版社,2012.
  • 3Kumar R, Novak J, Tomkins A. Structure and evolution of online social networks [M]//Link Mining: Models, Algo rithms, and Applications. New York: Springer, 2010:337-357.
  • 4Mislove A, Marcon M, Krishna P G, et al. Measurement and analysis of online social networks [C]//Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, Ser. IMC '07. New York.. ACM, 2007 : 29 - 42.
  • 5Kwak H, Lee C, Park H, et al. What is twitter, a social network or a news media? [C]//Proceedings of the 19th Inter- national Conference on World Wide Web. New York: ACM, 2010: 591 -600.
  • 6Java A, Song X, Finin T, et al. Why we twitter., understanding mieroblogging usage and communities [C]//Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis. New York.. ACM, 2007: 56- 65.
  • 7Fan P Y, Li P, Jiang Z H, et al. Measurement and analysis of topology and information propagation on Sina micro-blog [C]//Proceeding of IEEE International Conference on: Intelligence and Security Informatics. New York: IEEE Press, 2011:396 -401.
  • 8Guo Z, Li Z, Tu H. Sina microblog., an information-driven online social network [C]//Cyberworlds (CW), 2011 Inter- national Conference on Cyberworlds (CW). New York: IEEE Press, 2011:160 - 167.
  • 9Coulon F. The use of social network analysis in innovation research: a literature review ED]. Lund: Lund University, 2005.
  • 10Teutle A R M. Twitter: network properties analysis[C]//Electronics, Communications and Computer (CONIELE- COMP), 2010 20th International Conference on Date of Conference. New York: IEEE Press, 2010:180 - 186.

共引文献53

同被引文献38

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部