期刊文献+

基于经验分布和KL散度的协同过滤推荐质量评价研究 被引量:6

Study on recommendation quality evaluation based on empirical distribution and KL divergence
下载PDF
导出
摘要 提出了一种基于经验分布和KL散度的协同过滤推荐质量评价方法 RQE-EDKL(recommendation quality evaluation based on empirical distribution and KL divergence)。RQE-EDKL首先利用历史用户-商品数据生成不同商品数量下的商品历史使用概率分布;然后,利用该分布与各个协同过滤推荐方法得到的用户商品使用概率进行比较,计算其KL散度;最后,将KL散度最小的推荐结果视为最佳推荐结果并推送给用户。在Talking Data数据集上的实验结果表明,RQE-EDKL评价方法能够有效地在不同的推荐结果中选择更为切合用户真实需求的推荐结果,从而提高了协同过滤推荐的质量。 This paper proposed an approach called RQE-EDKL (recommendation quality evaluation based on empirical distribution and KL divergence) to evaluate the recommendation quality based on empirical distribution and KL divergence. QE-EDKL firstly made use of historical user-item data to produce the historical usage probability distribution of items at different quantities. Secondly, it calculated the KL divergence based on the distributions of the historical usage probability and the usa-ge probability of different recommendations. Thirdly, it regarded the recommendation with the minimum KL divergence as with the best quality and is recommended to the user. Experiments on TalkingData App data sets demonstrate that RQE-EDKL can effectively improve the quality of recommended results of collaborative filtering significantly on both accuracy and diversity.
作者 张文 姜祎盼 张思光 崔杨波 杜宇航 Zhang Wen;Jiang Yipan;Zhang Siguang;Cui Yangbo;Du Yuhang(School of Economics & Management,Beijing University of Chemical Technology,Beijing 100029,China;Institutes of Science & Development,Chinese Academy of Sciences,Beijing 100190,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第9期2625-2630,共6页 Application Research of Computers
基金 国家自然科学基金资助项目(61379046) 中央高校基本科研业务费(buctrc201504)
关键词 经验分布 推荐算法 KL散度 协同过滤 empirical distribution recommendation algorithm KL divergence collaborative filtering
  • 相关文献

参考文献5

二级参考文献151

  • 1陈冬林,聂规划,刘平峰.基于网页语义相似性的商品隐性评分算法[J].系统工程理论与实践,2006,26(11):98-102. 被引量:8
  • 2Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186
  • 3Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201
  • 4梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006
  • 5Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58
  • 6Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
  • 7Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354
  • 8Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70
  • 9Konstan JA, Miller BN, Maltz D, el al. GroupLens: Applying collaborative filtering to usenet news. Comm ACM, 1997, 40(3) : 77-87
  • 10Shardanand U, Maes P. Social information filtering: Algorithms for automating ‘Word of Mouth'. Proe Conf Human Factors in Computing Systems Denver, 1995: 210-217

共引文献501

同被引文献39

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部