摘要
研究一类带时滞的分数阶泛函微分方程边值问题.首先将所研究的问题转化为积分方程形式,运用非线性分析理论证明了边值问题解的存在性与唯一性定理,产生了求边值问题解的单调迭代序列,并进行了误差估计.其次运用广义单调迭代技术和耦合上下解方法,获得了边值问题解存在唯一的充分条件,并确定了解的取值范围.最后给出几个具体实例,用于说明所得到的结论具有较广泛的适应性.
In this paper,a class of boundary value problems of fractional functional differential equations with time delays is studied.Firstly,the problems studied in this paper are transformed into integral equations.The existence and uniqueness theorems of solutions for boundary value problems are proved by using nonlinear analysis theory.The monotone iterative sequences for solving the solutions of boundary value problems are generated and the error estimates are given.Secondly,by using the generalized monotone iteration technique and the coupled upper and lower solutions method,the sufficient conditions for the existence and uniqueness of solutions of boundary value problems are obtained,and the range of solutions is determined.Finally,some examples are given to illustrate the wide applicability of our main results.
作者
蹇星月
刘锡平
贾梅
骆泽宇
JIAN Xing-yue;LIU Xi-ping;JIA Mei;LUO Ze-yu(College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China)
出处
《高校应用数学学报(A辑)》
北大核心
2019年第3期301-314,共14页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
国家自然科学基金(11171220)
关键词
分数阶微分方程
泛函微分方程
边值问题
CAPUTO分数阶导数
耦合下上解
不动点定理
fractional differential equations
functional differential equations
boundary value problems
Caputo fractional derivative
coupled upper and lower solutions
fixed point theorem