摘要
针对拟牛顿优化算法求解非线性方程组和无约束优化问题时,需要进行大量的迭代计算的问题.文中提出了一种结合CF和PCG搜索的拟牛顿优化算法,该算法结合CF和PCG搜索的步长因子来得到一种有效的牛顿搜索算法.在强Wolfe准则下的全局收敛性和数值分析结果表明,文中所提出的算法能加快拟牛顿优化算法的求解速度并能得到更高的精度.
When quasi-Newton optimization algorithm is used to solve the nonlinear equations and unconstrained optimiza- tion problems,a large number of iterative computation are needed. Therefore,a quasi-Newton optimization algorithm combined with CF and PCG search is proposed. This algorithm combines the step factor of CF and PCG search to obtain an effective Newton search algorithm. The global convergence and numerical analysis results obtained by means of the strong Wolfe criterion show that the proposed algorithm can accelerate the solution of the quasi-Newton optimization algorithm and obtain high precision.
作者
范莉
FAN Li(Shaanxi Radio and Television University,Shangluo 726000,China)
出处
《现代电子技术》
北大核心
2019年第18期136-138,共3页
Modern Electronics Technique
基金
国家自然科学青年基金(61863113)~~
关键词
拟牛顿优化
非线性方程组
无约束优化
牛顿搜索算法
CHOLESKY分解
共轭梯度法
quasi - Newton optimization
nonlinear equation set
unconstrained optimization
Newton search algorithm
Cholesky decomposition
conjugate gradient method