摘要
随着智能设备的普及以及移动互联网、物联网和云计算的快速崛起,催生了以短视频为代表的新一代媒体经济,而围绕短视频资源的各种智能处理和分析技术,也成为当前多媒体信息领域的研究热点和前沿课题。尽管当前已有一些研究开始以短视频语义分析为切入点,致力于解决不同应用场景下的语义分析,但相关研究尚处于相对初始阶段。当前快速发展的外部环境,给短视频语义分析带了新的契机。以深度学习,张量分解等新一代人工智能和大数据处理技术的出现,可以更好助力研究者在应用基础理论和相关解决方案上实现突破,并为实现短视频检索、短视频自动标注及短视频个性化推荐等具体应用提供坚实的算法基础。
With the popularity of smart devices and the rapid development of mobile Internet,Internet of Things,and cloud computing,a new generation of media economy represented by short video has emerged recently.Against this background,various intelligent processing and analysis technologies around short video have also become increasingly popular in the field of multimedia.Although some studies take short video resources in the social media environment as the research object to meet different application scenarios,but still at a relatively initial stage.Currently,the rapid development of the external environment brings new opportunities for solving micro-video semantic analysis.Specifically,the emergence of a new generation of artificial intelligence and big data processing techniques,such as deep learning and tensor decomposition,can help researcher made breakthroughs in the basic theory of application and related solutions.Furthermore,it also provides solid algorithms to support a series of specific applications,such as short video retrieval,short video automatic annotation,and short video personalized recommendation.
作者
吕云玲
井佩光
LV Yunling;JING Peiguang(Tianjin radio and television station,Tianjin 300202,China;School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China)
出处
《电视技术》
2019年第5期16-18,共3页
Video Engineering
关键词
短视频
人工智能
深度学习
张量分解
micro-video
artificial intelligence
deep learning
tensor decomposition