期刊文献+

基于模糊类神经网络的双轴伺服电机运动控制 被引量:6

Motion Control of Dual Axis Servo Motor Based on Fuzzy Neural Network
下载PDF
导出
摘要 为了消除双轴线性伺服电机同步运动的相对速度误差,提出模糊类神经网络控制器,以取代传统的比例-积分-微分交叉耦合控制器。首先对双轴线性伺服电机系统进行建模,其次采用2个模糊类神经网络速度控制器提供需要的控制动作,以保持双轴线性伺服电机同步运动且追随速度命令。仿真结果证明,该控制方法在无载和有载时分别在0.4 s和0.5 s后两电机速度相对误差几乎为零,可适应的速度范围宽且对负载干扰具有高鲁棒性。 To eliminate the relative velocity error of the synchronous motion for the dual axis linear servo motor, the fuzzy neural network controller was proposed to replace the traditional cross coupling controller of proportionalintegral- differential. Firstly,the dual axis linear servo motor system was built. Then two fuzzy neural network speed controllers were used to provide the required control action,which kept synchronous motion and tracked speed command of a dual axis linear servo motor. The simulation shows that the relative speed error of the two motors is almost zero after 0.4 s and 0.5 s under unloaded and loaded condition by the proposed control method,respectively. In addition,the adaptable speed range is wide and the load interference is highly robust for the proposed method.
作者 马超 贾纯纯 MA Chao;JIA Chunchun(School of Automation and Information Engineering,Pingdingshan IndustrialCollege of Technology,Pingdingshan 467001,Henan,China)
出处 《电气传动》 北大核心 2019年第9期35-40,共6页 Electric Drive
基金 河南省教育厅自然科学研究项目(17A150040)
关键词 模糊类神经网络 交叉耦合控制器 速度控制器 双轴线性伺服 同步运动控制 鲁棒性 fuzzy neural network cross coupling controller speed controller dual axis linear servo synchronous motion control robustness
  • 相关文献

参考文献6

二级参考文献41

  • 1郑晓虎,朱荻.模糊神经网络在UV-LIGA工艺优化中的应用[J].光学精密工程,2006,14(1):139-144. 被引量:17
  • 2张承慧,石庆升,程金.一种多电机同步传动模糊神经网络控制器的设计[J].控制与决策,2007,22(1):30-34. 被引量:38
  • 3范岩.多电机同步控制策略的改进[J].机电工程,2007,24(6):65-66. 被引量:18
  • 4Lam,H.K.,Leung,F.H.F.Stability analysis of fuzzy control systems subject to uncertain grades of membership[J].IEEE Transactions on Systems,Man,and Cybernetics-Part B,2005,35(6):1322-1325.
  • 5Hai Bo Jiang,Tian Ping Zhang,Jian Jiang Yu,etc.Adaptive neural network control of nonlinear systems with input nonlinearity[C]//2006 International Conference on Machine Learning and Cybernetics,2006:273-277.
  • 6Du Feng,Qian Qingquan.Fuzzy RBF neural network control for networked control systems based on modified Smith predictor[C]//WCICA 2008.7th World Congress on Intelligent Control and Automation,2008:7847-7852.
  • 7Gawronski W,Beech-Brandt,J J,Ahlstrom H G,etc.Torque-bias profile for improved tracking of the deep space network antennas[J].IEEE on Antennas and Propagation,2000,42(6):35-45.
  • 8TAO G,MA X,L ING Y.Optimal and nonlinear decoupling control of systems with sandwiched backlash[J].Automatica,2001,37:165-176.
  • 9Renxi Gong,Yang Huang,Hao Wei,etc.Design of PID excitation controllers for synchronous generators based on fuzzy RBF neural network[C]//International Conference on Electrical Machines and Systems,2008:122-127.
  • 10Jang Ho Robert Kim,Maurer,H.Sensitivity analysis of optimal control problems with bang-bang controls.Proceedings[C]//42nd IEEE Conference on Decision and Control,2003:3281-3286.

共引文献77

同被引文献37

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部